JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Improvement of Measurement Precisions for Uranium Isotopes at Ultra Trace Levels by Modification of the Sample Introduction System in MC-ICP-MS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Mass Spectrometry Letters
  • Volume 7, Issue 2,  2016, pp.50-54
  • Publisher : Korean Society Mass Spectrometry
  • DOI : 10.5478/MSL.2016.7.2.50
 Title & Authors
Improvement of Measurement Precisions for Uranium Isotopes at Ultra Trace Levels by Modification of the Sample Introduction System in MC-ICP-MS
Park, Ranhee; Lim, Sang Ho; Han, Sun-Ho; Lee, Min Young; Park, Jinkyu; Lee, Chi-Gyu; Song, Kyuseok;
  PDF(new window)
 Abstract
Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) is currently used in our laboratory for isotopic and quantitative analyses of nuclear materials at ultra-trace levels in environmental swipe samples, which is a very useful for monitoring undeclared nuclear activities. In this study, to improve measurement precisions of uranium isotopes at ultratrace levels, we adopted a desolvating nebulizer system (Aridus-II, CETAC., USA), which can improve signal sensitivity and reduce formation of uranium hydride. A peristaltic pump was combined with Aridus-II in the sample introduction system of MC-ICP-MS to reduce long-term signal fluctuations by maintaining a constant flow rate of the sample solution. The signal sensitivity in the presence of Aridus-II was improved more than 10-fold and the formation ratio of UH/U decreased by 16- to 17- fold compared to a normal spray chamber. Long-term signal fluctuations were significantly reduced by using the peristaltic pump. Detailed optimizations and evaluations with uranium standards are also discussed in this paper.
 Keywords
MC-ICP-MS;desolvating nebulizer system;peristaltic pump;measurement precision;signal sensitivity;hydride formation;
 Language
English
 Cited by
1.
Improvement of bulk analysis technique for uranium in environmental samples with high thorium contents, Journal of Radioanalytical and Nuclear Chemistry, 2017, 314, 3, 2047  crossref(new windwow)
 References
1.
Henry, R.; Koller, D.; Liezers, M.; Farmer, O. T.; Barinaga, C.; Koopenaal, D. W.; Wacker, J. J. Radioanal. Nucl. Chem. 2001, 249, 103. crossref(new window)

2.
Boulyga, S. F.; Becker, J. S.; Matusevitch, J. L.; Dietz, H. J. Int. J. Mass Spectrom. 2000, 203, 143. crossref(new window)

3.
Donohue D. L. J. Alloy. Compd. 1998, 271-273, 11. crossref(new window)

4.
Magara M.; Hanazawa Y.; Esaka F.; Miyamoto Y., Yasuda K.; Watanabe K.; Usuda S.; Nishimura H.; Adachi T. Appl. Radiat. Isot. 2000, 53, 87. crossref(new window)

5.
Varga Z.; Surányi G.; Vajda N.; Stefánka Z. J. Radioanal. Nucl. Chem. 2007, 274, 87. crossref(new window)

6.
Mayer K.; Wallenius M.; Ray I.; Stefánka Z. Analyst 2005, 130, 433. crossref(new window)

7.
Eppich, G. R.; Williams, R. W.; Gaffney, A. M.; Schorzman, K. C. J. Anal. At. Spectrom. 2013, 28, 666. crossref(new window)

8.
Varga, Z.; Surányi, G. Anal. Chim Acta 2007, 599, 16. crossref(new window)

9.
Turner, S.; van Calsteren, P.; Vigier, N.; Thomas, L. J. Anal. Atom. Spectrom. 2001, 16, 612. crossref(new window)

10.
Murphy, J. B.; Fernandez-Suarez, J.; Jeffries, T. E.; Strachan, R. A. J. Geol. Soc. 2004, 161, 243. crossref(new window)

11.
Thurber, D. L.; Broecjer, R. L.; Blanchar, R. L.; Potraz, H. A. Science 1965, 149, 55. crossref(new window)

12.
Edwards, R. L.; Chen, J. H.; Wasserberg, G. J. Earth Planet. Sci. Lett. 1987, 81, 175. crossref(new window)

13.
Andersen, M. B.; Stirling, C. H.; Potter, E. K.; Halliday, A. N. Int. J. Mass Spectrom. 2004, 237, 107. crossref(new window)

14.
Ball, L.; Sims, K. W.; Schweiters, J. J. Anal. At. Spectrom. 2008, 23, 173. crossref(new window)

15.
Weyer, S.; Schweiters, J. B. Int. J. Mass Spectrom. 2003, 226, 355. crossref(new window)

16.
Boulyga, S. F.; Matusevich, J. L.; Mironov, V. P.; Kudrjashov, V. P.; Halicz, L.; Segal, I.; McLean, J. A.; Montaser, A.; Becker, S. J. Anal. At. Spectrom. 2002, 17, 958. crossref(new window)

17.
Minnich, M. G.; Houk, R. S. J. Anal. Atom. Spectrom. 1998, 13, 167. crossref(new window)

18.
Botto, R. I.; Zhu, J. J. J. Anal. Atom. Spectrom. 1994, 9, 905. crossref(new window)

19.
Asfaw, A.; Wibetoe, G. J. Anal. Atom. Spectrom. 2006, 21, 1027. crossref(new window)

20.
Luan, S.; Pang, H. -M.; Shum, S. C. K.; Houk, R. S. J. Anal. Atom. Spectrom. 1992, 7, 799. crossref(new window)

21.
Björn, E.; Jonsson, T.; Gotitom, D. J. Anal. At. Spectrom. 2002, 17, 1390. crossref(new window)

22.
Zoriy, M. V.; Halicz, L.; Ketterer, M. E.; Pickhardt, C.; Ostapczuk, P.; Becker, J. S. J. Anal. At. Spectrom. 2004, 19, 362. crossref(new window)