JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Coherence Studies of Photons Emitted from a Single Terrylene Molecule Using Michelson and Young’s Interferometers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Coherence Studies of Photons Emitted from a Single Terrylene Molecule Using Michelson and Young’s Interferometers
Yoon, Seung-Jin; Trinh, Cong Tai; Lee, Kwang-Geol;
  PDF(new window)
 Abstract
Coherence length (time) is a key parameter in many classical and quantum optical applications. Two interferometers – Michelson and Young’s double-slit – are used to characterize the temporal coherence of single photons emitted from single terrylene molecules. For quantitative analysis, a dispersion-related distortion in the interference pattern of a Michelson interferometer is carefully corrected by a simple dispersion compensation. Additionally, it has been demonstrated that Young’s interferometer can be used in temporal coherence studies at the single photon level with high accuracy. The pros and cons of the two systems are discussed. The measured coherence lengths in the two systems are consistent with one another under the self-interference interpretations.
 Keywords
Coherence length;Single photon source;Interferometry;
 Language
English
 Cited by
 References
1.
S. Scheel, “Single-photon sources - an introduction,” J. Mod. Opt. 56, 141-160 (2009). crossref(new window)

2.
B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129-1179 (2005). crossref(new window)

3.
I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74, 076501 (2011). crossref(new window)

4.
C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290-293 (2000). crossref(new window)

5.
O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425, DOI: 10.1038/ncomms2434 (2013). crossref(new window)

6.
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). crossref(new window)

7.
J. M. Schmitt, “Optical coherence tomography (OCT): A review,” IEEE J. Select. Topics Quantum Electron. 5, 1205-1215 (1999). crossref(new window)

8.
M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003). crossref(new window)

9.
F. Jelezko, A. Volkmer, I. Popa, K. K. Rebane, and J. Wrachtrup, “Coherence length of photons from a single quantum system,” Phys. Rev. A 67, 041802 (2003). crossref(new window)

10.
V. Jacques, E. Wu, T. Toury, F. Treussart, A. Aspect, P. Grangier, and J.-F. Roch, “Single-photon wavefront-splitting interference,” Eur. Phys. J. D 35, 561-565 (2005). crossref(new window)

11.
G. D. Marshall, T. Gaebel, J. C. F. Matthews, J. Enderlein, J. L. O'Brien, and J. R. Rabeau, “Coherence properties of a single dipole emitter in diamond,” New J. Phys. 13, 055016 (2011). crossref(new window)

12.
R. Korlacki, M. Steiner, H. Qian, A. Hartschuh, and A. J. Meixner, “Optical fourier transform spectroscopy of single-walled carbon nanotubes and single molecules,” Chem. Phys. Chem. 8, 1049-1055 (2007).

13.
L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274-S282 (1999). crossref(new window)

14.
L. Ph. H. Schmidt, S. Schössler, F. Afaneh, M. Schöffler, K. E. Stiebing, H. Schmidt-Böcking, and R. Dörner, “Young-type interference in collisions between hydrogen molecular ions and helium,” Phys. Rev. Lett. 101, 173202 (2008). crossref(new window)

15.
M. Santarsiero and R. Borghi, “Measuring spatial coherence by using a reversed-wavefront Young interferometer,” Opt. Lett. 31, 861-863 (2006). crossref(new window)

16.
R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett. 387, 490-495 (2004). crossref(new window)

17.
K. G. Lee, “Statistical analysis of photons from a single terrylene molecule for the study of the energy level scheme,” J. Korean Phys. Soc. 64, 1792-1796 (2014). crossref(new window)