Advanced SearchSearch Tips
Characteristics of THz Pulse Propagation on Teflon Covered Two-Wire Lines
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of THz Pulse Propagation on Teflon Covered Two-Wire Lines
Jo, Jeong Sang; Jeon, Tae-In;
  PDF(new window)
We report efficient direct coupling of THz dipole antenna pulses onto air spaced two-wire transmission lines and Teflon covered two-wire lines. The air spaced two-wire lines show TEM mode propagation with very small group velocity dispersion (GVD) and relatively low attenuation. The Teflon covered two-wire lines showed comparatively much higher attenuation and GVD. However, the Teflon covered two-wire lines show a very good guiding property when the lines are curved. Although the lines are circled only 5.0 cm in diameter, there is no additional attenuation compared to straight the lines.
Terahertz;Waveguides;Guiding property;Propagation;
 Cited by
Enhanced THz guiding properties of curved two-wire lines, Optics Express, 2016, 24, 6, 6136  crossref(new windwow)
R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultra-wideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431-1433 (1999). crossref(new window)

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846-848 (2001). crossref(new window)

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092-6094 (2004). crossref(new window)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004). crossref(new window)

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904-161906 (2005). crossref(new window)

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506-233508 (2009). crossref(new window)

J. S. Jo, T.-I. Jeon, and D. Grischkowsky, “Prototype 250 GHz bandwidth chip to chip electrical interconnect, characterized with ultrafast optoelectronics,” IEEE Trans. THz Sci. Technol. 3, 453-460 (2013). crossref(new window)

H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express 18, 7415-7420 (2010). crossref(new window)

H. Pahlevaninezhad and T. E. Darcie, “Coupling of terahertz waves to a two-wire waveguide,” Opt. Express 18, 22614-22624 (2010). crossref(new window)

P. Tannouri, M. Peccianti, P. L. Lavertu, F. Vidal, and R. Morandotti, “Quasi-TEM mode propagation in twin-wire THz waveguides,” Chinese Opt. Lett. 9, 110013-110016 (2011). crossref(new window)

G. Goubau, “Open wire lines,” IRE Trans. on microwave Theory and Techniques MTT-4, 197-200 (1956).

F. J. Lofy and T. K. Ishii, “Mode of millimeter wave two-wire surface wave transmission line fields,” Proc. IEEE 53, 1652-1653 (1965). crossref(new window)

M. B. Ketchen, D. Grischkowsky, T. C. Chen, C.-C. Chi, I. N. Duling, III, N. J. Halas, J.-M. Halbout, J. A. Kash, and G. P. Li, “Generation of sub-picosecond electrical pulses on coplanar transmission lines,” Appl. Phys. Lett. 48, 751-753 (1986). crossref(new window)

D. Grischkowsky, “Optoelectronic characterization of transmission lines and waveguides by THz time-domain spectroscopy,” IEEE J. Select. Topics Quantum Electron. 6, 1122-1135 (2000). crossref(new window)

Y. B. Ji, E. S. Lee, J. S. Jang, S. H. Kim, and T.-I. Jeon, “Coupling properties of a conical tungsten-wire waveguide in the terahertz frequency range,” J. Korean Phys. Soc. 53, 584-589 (2008). crossref(new window)

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 17088-17101 (2009). crossref(new window)

S. Ramo, J. R. Whinnery, and T. van-Duzer, Fields and Waves in Communication Electronics, 3rd ed. (John Wiley & Sons, Inc., New York, USA, 1993).