Advanced SearchSearch Tips
Highly Efficient Trans-Reflective Color Filters Incorporating TiO2-MgF2 Multilayer Stacks
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Highly Efficient Trans-Reflective Color Filters Incorporating TiO2-MgF2 Multilayer Stacks
Shrestha, Vivek Raj; Park, Chul-Soon; Koirala, Ishwor; Lee, Sang-Shin; Choi, Duk-Yong;
  PDF(new window)
We report for the first time highly efficient trans-reflective color filters capable of demonstrating coloration in both transmission and reflection modes by taking advantage of a multilayer stack consisting of MgF2 and TiO2 used respectively as the low and high index materials. In order to enable such trans-reflective performance, securing an optimal stop band assuming an appropriate bandwidth within the visible regime is pivotal, which was realized by tailoring the thicknesses and the numbers of TiO2-MgF2 bi-layers. Three devices were designed through rigorous simulations and developed via e-beam evaporation to demonstrate vivid blue, green, and red colors in the reflection mode, and yellow, magenta, and cyan colors in the transmission mode, featuring an enhanced efficiency exceeding 90% under normal incidence. The color performance of the filters was examined by referring to the chromaticity coordinates of the transmission and reflection spectra, alongside photographed color images. The dependence of the performance on the angle of incidence was explored with respect to incident polarization, indicating that a transmission surpassing 60% could be stably maintained up to an angle of 75°. Polarization independent transfer characteristics were especially achieved for the normal incidence. The proposed devices may be readily extended to other spectral regimes by adjusting the thicknesses of the films.
Color filters;Transmissive and reflective modes;Dense materials;
 Cited by
S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349-4354 (2012). crossref(new window)

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonatorsfor high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 1-5 (2010).

M. Khorasaninejad, S. M. Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, and S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24, 355501 (2013). crossref(new window)

H. J. Park, T. Xu, J. T. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5, 7055-7060 (2011). crossref(new window)

T. Ellenbogen, K. Seo, and K. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026-1031 (2012). crossref(new window)

C. S. Park, V. R. Shrestha, S. S. Lee, and E. S. Kim, “Transmissive color switch tapping into a polarization-selective spectral filter,” IEEE Photon. Technol. Lett. 24, 1552-1554 (2012). crossref(new window)

Z. Wu, D. Lee, M. F. Rubner, and R. E. Cohen, “Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks,” Small 3, 1445-1451 (2007). crossref(new window)

P. Kurt, D. Banerjee, R. E. Cohen, and M. F. Rubner, “Structural color via layer-by-layer deposition: layered nanoparticle arrays with near-UV and visible reflectivity bands,” J. Mater. Chem. 19, 8920-8927 (2009). crossref(new window)

S. Y. Choi, M. Mamak, G. V. Freymann, N. Chopra, and G. A. Ozin, “Mesoporous Bragg stack color tunable sensors,” Nano Lett. 6, 2456-2461 (2006). crossref(new window)

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-enhanced thermally tunable TiO2/SiO2 Bragg stacks,” J. Phys. Chem. C 116, 298-305 (2012). crossref(new window)

J. W. Leem, X. Y. Guan, and J. S. Yu, “Tunable distributed Bragg reflectors with wide angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications,” Opt. Express 22, 18519-18526 (2014). crossref(new window)

D. P. Puzzo, L. D. Bonifacio, J. Oreopoulos, C. M. Yip, I. Manners, and G. A. Ozin, “Color from colorless nanomaterials: Bragg reflectors made of nanoparticles,” J. Mater. Chem. 19, 3500-3506 (2009). crossref(new window)

K. Chung, S. Yu, C. J. Heo, J. W. Shim, S. M. Yang, N. G. Han, H. S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible angle-independent structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24, 2375-2379 (2012). crossref(new window)

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317-1335 (2007). crossref(new window)

C. L. Tien, T. W. Lin, H. D. Tzeng, Y. J. Jen, and M. C. Liu, “Temperature-dependent optical and mechanical properties of obliquely deposited MgF2 thin films,” Indian J. Pure Appl. Phys. 52, 117-123 (2014).

H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010), Chapter 5.

R. P. Prasankumar and A. J. Taylor, Optical Techniques for Solid-State Materials Characterization (CRC Press, 2011), Chapter 7.

S. H. Woo and C. K. Hwangbo, “Effects of annealing on the optical, structural, and chemical properties of TiO2 and MgF2 thin films prepared by plasma ion-assisted deposition,” Appl. Opt. 45, 1447-1455 (2006). crossref(new window)

S. A. Taya, M. H. Abu Nasr, and T. M. El-Agez, “Reflection, transmission, and ellipsometric parameters of the multilayer structure using a bi-characteristic-impedance transmission line approach,” Optica Applicata 43, 817-829 (2013).

R. Liang, Biomedical Optical Imaging Technologies: Design and Applications (Springer, 2013), Chapter 4.

D. Zhang, M. Gordon, J. M. Russo, S. Vorndran, M. Escarra, H. Atwater, and R. K. Kostuk, “Reflection hologram solar spectrum-splitting filters,” Proc. SPIE 8468, 846807-846807 (2012).


V. Kochergin, Omnidirectional Optical Filters (Springer, 2003), Chapter 3.

H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010), Chapter 6.

CIE, Colorimetry, 3rd ed., CIE 15:2004 (Commission Internationale de l’Eclairage, 2004).

R. G. Kuehni, Color: An Introduction to Practice and Principles (John Wiley & Sons, 2013), Chapter 6.