Advanced SearchSearch Tips
Propagation Properties of a Partially Coherent Flat-Topped Vortex Hollow Beam in Turbulent Atmosphere
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Propagation Properties of a Partially Coherent Flat-Topped Vortex Hollow Beam in Turbulent Atmosphere
Liu, Dajun; Wang, Yaochuan; Wang, Guiqiu; Yin, Hongming;
  PDF(new window)
Using coherence theory, the partially coherent flat-topped vortex hollow beam is introduced. The analytical equation for propagation of a partially coherent flat-topped vortex hollow beam in turbulent atmosphere is derived, using the extended Huygens-Fresnel diffraction integral formula. The influence of coherence length, beam order N, topological charge M, and structure constant of the turbulent atmosphere on the average intensity of this beam propagating in turbulent atmosphere are analyzed using numerical examples.
Partially coherent flat-topped vortex hollow beam;Atmospheric turbulence;Laser propagation;
 Cited by
Intensity properties of flat-topped vortex hollow beams propagating in atmospheric turbulence, Optik - International Journal for Light and Electron Optics, 2016, 127, 20, 9386  crossref(new windwow)
F. Wang, X. Liu, and Y. Cai, “Propagation of partially coherent beam in turbulent atmosphere: A review,” Progress In Electromagnetics Research 150, 123-143 (2015). crossref(new window)

Y. Cai and S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14, 1353-1367 (2006). crossref(new window)

H. Eyyuboğlu and Y. Baykal, “Scintillation index of flat-topped Gaussian laser beam in strongly turbulent medium,” J. Opt. Soc. Am. A 28, 1540-1544 (2011). crossref(new window)

G. Gbur and R. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25, 225-230 (2008). crossref(new window)

O. Korotkova, J. Pu, and E. Wolf, “Spectral changes in electromagnetic stochastic beams propagating through turbulent atmosphere,” J. Mod. Opt. 55, 1199-1208 (2008). crossref(new window)

Y. Baykal, H. T. Eyyuboğlu, and Y. Cai, “Scintillations of partially coherent multiple Gaussian beams in turbulence,” Appl. Opt. 48, 1943-1954 (2009). crossref(new window)

Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polarized beam on propagation,” Opt. Commun. 354, 353-361 (2015). crossref(new window)

H. Wang, D. Liu, Z. Zhou, S. Tong, and Y. Song, “Propagation properties of radially polarized partially coherent beam in turbulent atmosphere,” Optics and Lasers in Engineering 49, 1238-1244 (2011). crossref(new window)

F. Wang, S. Zhu, and Y. Cai, “Experimental study of the focusing properties of a Gaussian Schell-model vortex beam,” Opt. Lett. 36, 3281-3283 (2011). crossref(new window)

G. Zhou, Y. Cai, and X. Chu, “Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere,” Opt. Express 20, 9897-9910 (2012). crossref(new window)

H. Wang and X. Qian, “Spectral properties of a random electromagnetic partially coherent flat-topped vortex beam in turbulent atmosphere,” Opt. Commun. 291, 38-47 (2013). crossref(new window)

Y. Gu, “Statistics of optical vortex wander on propagation through atmospheric turbulence,” J. Opt. Soc. Am. A 30, 708-716 (2013).

G. Zhou and G. Ru, “Angular momentum density of a linearly polarized Lorentz-Gauss vortex beam,” Opt. Commun. 313, 157-169 (2014). crossref(new window)

Y. Huang, F. Wang, Z. Gao, and B. Zhang, “Propagation properties of partially coherent electromagnetic hyperbolicsine-Gaussian vortex beams through non-Kolmogorov turbulence,” Opt. Express 23, 1088-1102 (2015). crossref(new window)

G. Wu, W. Dai, H. Tang, and H. Guo, “Beam wander of random electromagnetic Gaussian-schell model vortex beams propagating through a Kolmogorov turbulence,” Opt. Commun. 336, 55-58 (2015). crossref(new window)

H. Liu, Y. Lü, J. Xia, X. Pu, and L. Zhang, “Flat-topped vortex hollow beam and its propagation properties,” J. Opt. 17, 075606 (2015). crossref(new window)

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312, 263-267 (2003). crossref(new window)

A. Jeffrey and H. Dai, Handbook of Mathematical Formulas and Integrals, 4th ed. (Academic Press Inc., 2008).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

G. Gbur and T. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117-125 (2003). crossref(new window)