JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Influence of Rapid Thermal Annealing Processed Metal-Semiconductor Contact on Plasmonic Waveguide Under Electrical Pumping
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Influence of Rapid Thermal Annealing Processed Metal-Semiconductor Contact on Plasmonic Waveguide Under Electrical Pumping
Lu, Yang; Zhang, Hui; Mei, Ting;
  PDF(new window)
 Abstract
The influence of Au/Ni-based contact formed on a lightly-doped (7.3×1017cm−3, Zn-doped) InGaAsP layer for electrical compensation of surface plasmon polariton (SPP) propagation under various rapid thermal annealing (RTA) conditions has been studied. The active control of SPP propagation is realized by electrically pumping the InGaAsP multiple quantum wells (MQWs) beneath the metal planar waveguide. The metal planar film acts as the electric contact layer and SPP waveguide, simultaneously. The RTA process can lower the metal-semiconductor electric contact resistance. Nevertheless, it inevitably increases the contact interface morphological roughness, which is detrimental to SPP propagation. Based on this dilemma, in this work we focus on studying the influence of RTA conditions on electrical control of SPPs. The experimental results indicate that there is obvious degradation of electrical pumping compensation for SPP propagation loss in the devices annealed at 400℃ compared to those with no annealing treatment. With increasing annealing duration time, more significant degradation of the active performance is observed even under sufficient current injection. When the annealing temperature is set at 400℃ and the duration time approaches 60s, the SPP propagation is nearly no longer supported as the waveguide surface morphology is severely changed. It seems that eutectic mixture stemming from the RTA process significantly increases the metal film roughness and interferes with the SPP signal propagation.
 Keywords
Surface Plasmons (SPs);Quantum-well devices;Plasmonic waveguide;Rapid Thermal Anneal (RAT);
 Language
Korean
 Cited by
 References
1.
T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835 (2004). crossref(new window)

2.
K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nature Photon. 3, 55-58 (2009). crossref(new window)

3.
A. Babuty, A. Bousseksou, J.-P. Tetienne, I. M. Doyen, C. Sirtori, G. Beaudoin, I. Sagnes, Y. D. Wilde, and R. Colombell, “Semiconductor surface plasmon sources,” Phys. Rev. Lett. 104, 226806-1~226806-4 (2010). crossref(new window)

4.
A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231-2235 (2011). crossref(new window)

5.
X. J. Zhang, Y. C. Li, T. Li, S. Y. Lee, C. G. Feng, L. B. Wang, and T. Mei, “Gain-assisted propagation of surface plasmon polaritons via electrically pumped quantum wells,” Opt. Lett. 35, 3075-3077 (2010). crossref(new window)

6.
Y. C. Li, H. Zhang, T. Mei, N. Zhu, D. H. Zhang, and J. H. Teng, “Effect of dielectric cladding on active plasmonic device based on InGaAsP multiple quantum wells,” Opt. Express 22, 25599-25607 (2014). crossref(new window)

7.
C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, “Polarization of the edge emission from Ag/InGaAsP Schottky plasmonic diode,” Appl. Phys. Lett. 102, 061112-1~061112-4 (2013). crossref(new window)

8.
M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. C. Zhu, M. Sun, P. J. Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107-11112 (2009). crossref(new window)

9.
C. Garcia, V. Coello, Z. Han, I. P. Radko, and S. I. Bozhevolnyi, “Partial loss compensation in dielectric-loaded plasmonic waveguides at near infra-red wavelengths,” Opt. Express 20, 7771-7776 (2012). crossref(new window)

10.
I. P. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18, 18633-18641 (2010). crossref(new window)

11.
W. Johnstone, G. Stewart, T. Hart, and B. Culshaw, “Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices,” IEEE J. Lightwave Technol. 8, 538-544 (1990). crossref(new window)

12.
H. P. Zhao, J. Zhang, G. Y. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98, 151115-1~151115-3 (2011). crossref(new window)