JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Investigation on Terahertz Generation by GaP Ridge Waveguide Based on Cascaded Difference Frequency Generation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Investigation on Terahertz Generation by GaP Ridge Waveguide Based on Cascaded Difference Frequency Generation
Li, Zhongyang; Zhong, Kai; Bing, Pibin; Yuan, Sheng; Xu, Degang; Yao, Jianquan;
  PDF(new window)
 Abstract
Terahertz (THz) generation by a GaP ridge waveguide with a collinear modal phase-matching scheme based on cascaded difference frequency generation (DFG) processes is theoretically analyzed. The cascaded Stokes interaction processes and the cascaded anti-Stokes interaction processes are investigated from coupled wave equations. THz intensities and quantum conversion efficiency are calculated. Compared with non-cascaded DFG processes, THz intensities from 11-order cascaded DFG processes are increased to 5.48. The quantum conversion efficiency of 177.9% in cascaded processes can be realized, exceeding the Manley-Rowe limit.
 Keywords
Terahertz wave;Cascaded optical processes;Difference frequency generation;
 Language
Korean
 Cited by
 References
1.
S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nature Photon. 7, 977-981 (2013). crossref(new window)

2.
C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nature Photon. 8, 605-609 (2014). crossref(new window)

3.
M. Johnston, “Plasmonics: Superfocusing of terahertz waves,” Nature Photon. 1, 14-15 (2007). crossref(new window)

4.
M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon. 1, 97-105 (2007). crossref(new window)

5.
R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002). crossref(new window)

6.
K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007). crossref(new window)

7.
B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photon. 1, 517-525 (2007). crossref(new window)

8.
G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153-156 (2002). crossref(new window)

9.
Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies,” IEEE J. Select. Topics Quantum Electron. 10, 1171-1179 (2004). crossref(new window)

10.
W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331-2333 (2004). crossref(new window)

11.
Y. J. Ding, “Progress in terahertz sources based on difference-frequency generation,” J. Opt. Soc. Am. B 31, 2696-2711 (2014). crossref(new window)

12.
A. Majkić, M. Zgonik, A. Petelin, M. Jazbinšek, B. Ruiz, C. Medrano, and P. Günter, "Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1," Appl. Phys. Lett. 105, 141115 (2014). crossref(new window)

13.
B. Dolasinski, P. E. Powers, J. W. Haus, and A. Cooney, “Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG,” Opt. Express 23, 3669-3680 (2015). crossref(new window)

14.
K. Saito, T. Tanabe, and Y. Oyama, “Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing,” Appl. Opt. 53, 3587-3592 (2014). crossref(new window)

15.
P. Liu, D. Xu, H. Yu, H. Zhang, Z. Li, K. Zhong, Y. Wang, and J. Yao, “Coupled-mode theory for Cherenkov-type guided-wave terahertz generation via cascaded difference frequency generation,” IEEE J. Lightwave Technol. 31, 2508-2514 (2013). crossref(new window)

16.
A. J. Lee and H. M. Pask, “Cascaded stimulated polariton scattering in a Mg:LiNbO3 terahertz laser,” Opt. Express 23, 8687-8698 (2015). crossref(new window)

17.
K. Saito, T. Tanabe, and Y. Oyama, “Cascaded terahertz-wave generation efficiency in excess of the Manley-Rowe limit using a cavity phase-matched optical parametric oscillator,” J. Opt. Soc. Am. B 32, 617-621 (2015). crossref(new window)

18.
K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near- infrared lasers,” J. Appl. Phys. 105, 063102-1~063102-2 (2009). crossref(new window)

19.
I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268-2294 (1997). crossref(new window)

20.
T. D. Wang, Y. C. Huang, M. Y. Chuang, Y. H. Lin, C. H. Lee, Y. Y. Lin, F. Y. Lin, and G. K. Kitaeva, “Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain,” Opt. Express 21, 2452-2462 (2013). crossref(new window)

21.
J. Xia, J. Yu, Y. Li, and S. Chen, “Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43, 1953-1954 (2004). crossref(new window)

22.
P. Yeh and A. Yariv, Photonics: Optical Electronics in Modern Communication (Oxford University Press, New Delhi, 2007).

23.
M. Bass, J. M. Enoch, E. W. Van Stryland, and W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, New York, USA, 2001).

24.
E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, USA, 1998).

25.
T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237-239 (2003). crossref(new window)