JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Independent Color Filtering of Differently Polarized Light Using Metal-Insulator-Metal Type Guided Mode Resonance Structure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Independent Color Filtering of Differently Polarized Light Using Metal-Insulator-Metal Type Guided Mode Resonance Structure
Jung, Young Jin; Park, Namkyoo;
  PDF(new window)
 Abstract
The independent operation of a color filter for incident polarization is demonstrated using a guided-mode resonance (GMR) filter employing a metal-insulator-metal (MIM) waveguide. To achieve independent operation, a rectangular MIM grating is proposed as a wave-guide resonator. The design considerations are discussed and include how to determine the grating period and slit width. Power flow distribution is observed with slit width variation. Blue-green, green-red, and blue-red filters for corresponding x- and y-polarizations are demonstrated as application examples with numerical simulation with rectangle-shaped MIM grating. As a practical application, feasibility as a chromatic polarizer is discussed.
 Keywords
Guided-mode resonance;GMR filter;Plasmon;Color filter;MIM waveguide;
 Language
Korean
 Cited by
 References
1.
S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606-2613 (1993). crossref(new window)

2.
A. M. Raymond, C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided mode resonance filter as an external feedback element in a double-cladding optical fiber laser,” IEEE Photon. Technol. Lett. 19, 2030-2032 (2007). crossref(new window)

3.
S. Kaja, J. D. Hilgenberg, J. L. Clark, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostizcs,” J. Biomed. Opt. 17, 081412-1 (2012). crossref(new window)

4.
M. J. Uddin and R. Magnusson, “Guided-mode resonant thermo-optic tunable filters,” IEEE Photon. Technol. Lett. 25, 1412-1415 (2013). crossref(new window)

5.
R. Magnusson, M. Shokooh-Saremi, and X. Wang, “Dispersion engineering with leaky-mode resonant photonic lattices,” Opt. Express 18, 108-116 (2010). crossref(new window)

6.
O. Kilic, S. Fan, and O. Solgaard, “Analysis of guided-resonance-based polarization beam splitting in photonic crystal slabs,” J. Opt. Soc. Am. A 25, 2680-2692 (2008). crossref(new window)

7.
K. J. Lee, J. Giese, L. Ajayi, R. Magnusson, and E. Johnson, “Resonant grating polarizers made with silicon nitride, titanium dioxide, and silicon: Design, fabrication, and characterization,” Opt. Express 22, 9271-9281 (2014). crossref(new window)

8.
J. H. Barton, C. R. Garcia, E. A. Berry, R. G. May, D. T. Gray, and R. C. Rumpf, “All‐dielectric frequency selective surface for high power microwaves,” IEEE Transactions on Antennas and Propagation 62, 3652-3656 (2014). crossref(new window)

9.
Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18, 2126-2128 (2006). crossref(new window)

10.
B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, "High angular tolerant color filter using subwavelength grating," Appl. Phys. Lett. 94, 213104 (2009). crossref(new window)

11.
E.-H. Cho, H.-S. Kim, B.-H. Cheong, P. Oleg, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N.-C. Park, and Y.-P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express 17, 8621-8629 (2009). crossref(new window)

12.
E.-H. Cho, H.-S. Kim, J.-S. Sohn, C.-Y. Moon, N.-C. Park, and Y.-P. Park, “Nanoimprinted photonic crystal color filters for solar-powered reflective displays,” Opt. Express 18, 27712-27722 (2010). crossref(new window)

13.
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelenght hole arrays,” Nature 391, 667-669 (1998). crossref(new window)

14.
H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Physical Review B, Condensed Matter and Materials Physics 58, 6779-6782 (1998). crossref(new window)

15.
J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Physical Review Letters 83, 2845-2848 (1999). crossref(new window)

16.
E. Popov, M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Physical Review B 62, 16100 (2000). crossref(new window)

17.
Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Physical Review Letters 88, 057403 (2002). crossref(new window)

18.
K. Walls, Q. Chen, S. Collins, D. R. S. Cumming, and T. D. Drysdale, “Automated design, fabrication, and characterization of color matching plasmonic filters,” IEEE Photon. Technol. Lett. 24, 602-604 (2012). crossref(new window)

19.
Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18, 14056-14062 (2010). crossref(new window)

20.
Q. Chen, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “CMOS photodetectors integrated with plasmonic color filters,” IEEE Photon. Technol. Lett. 24, 197-199 (2012). crossref(new window)

21.
Q. Chen, D. Das, D. Chitnis, K. Walls, T. D. Drysdale, S. Collins, and D. R. S. Cumming, “A CMOS image sensor integrated with plasmonic colour filters,” Plasmonics 7, 695-699 (2012). crossref(new window)

22.
F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16, 9571-9579 (2008). crossref(new window)

23.
S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349-4354 (2012). crossref(new window)

24.
S. P. Burgos, S. Yokogawa, and H. A. Atwater, “Color imaging via nearest neighbor hole coupling in plasmonic color filters integrated onto a complementary metal-oxide semiconductor image sensor,” Acs Nano 7, 10038-10047 (2013). crossref(new window)

25.
D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, "Polarization independent visible color filter comprising an aluminum film with surface plasmon enhanced transmission through a subwavelength array of holes," Appl. Phys. Lett. 98, 093113 (2011). crossref(new window)

26.
G. Si, Y. Zhao, H. Liu, S. Teo, M. Zhang, T. J. Huang, A. J. Danner, and J. Teng, "Annular aperture array based color filter," Appl. Phys. Lett. 99, 033105 (2011). crossref(new window)

27.
H. Lee, Y. Yoon, S. Lee, S. Kim, and K. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express 15, 15457-15463 (2007). crossref(new window)

28.
T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, "Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging," Nature Communication 1, 59 (2010).

29.
A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998). crossref(new window)

30.
T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026-1031 (2012). crossref(new window)

31.
H. Yun, S. Lee, K. Hong, J. Yeom, and B. Lee, "Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity," Nature Communication 6, 7133 (2015). crossref(new window)

32.
Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters,” Advanced Materials 11, 223-223 (1999). crossref(new window)