Advanced SearchSearch Tips
Dependence of Q Factor on Surface Roughness in a Plasmonic Cavity
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dependence of Q Factor on Surface Roughness in a Plasmonic Cavity
Kim, Yoon-Ho; Kwon, Soon-Hong; Ee, Ho-Seok; Hwang, Yongsop; No, You-Shin; Park, Hong-Gyu;
  PDF(new window)
We investigated surface-roughness-dependent optical loss in a plasmonic cavity consisting of a semiconductor nanodisk/silver nanopan structure. Numerical simulations show that the quality factors of plasmonic resonant modes significantly depend on the surface roughness of the dielectric-metal interface in the cavity structure. In the transverse-magnetic-like whispering-gallery plasmonic mode excited in a structure with disk diameter of 1000 nm, the total quality factor decreased from 260 to 130 with increasing root-mean-square (rms) surface roughness from 0 to 5 nm. This quantitative theoretical study shows that the smooth metal surface plays a critical role in high-performance plasmonic devices.
Surface plasmon polaritons;Plasmonic cavities;Surface roughness;Finite-difference time-domain simulations;
 Cited by
Luminescent Silicon-Rich Nitride Horizontal Air-Slot Microdisk Resonators for Biosensing, IEEE Photonics Technology Letters, 2016, 28, 21, 2331  crossref(new windwow)
S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679-3683 (2010). crossref(new window)

S.-H. Kwon, J.-H. Kang, S.-K. Kim, and H.-G. Park, “Surface plasmonic nanodisk/nanopan lasers,” IEEE J. Quantum Electron. 47, 1346-1353 (2011). crossref(new window)

M.-K. Seo, S.-H. Kwon, H.-S. Ee, and H.-G. Park, “Full three-dimensional subwavelength high-Q surface-plasmon-polariton cavity,” Nano Lett. 9, 4078-4082 (2009). crossref(new window)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotech. 8, 506-511 (2013). crossref(new window)

Y. Hwang, M.-S. Hwang, W. W. Lee, W. I. Park, and H.-G. Park, "Metal-coated silicon nanowire plasmonic waveguides," Appl. Phys. Express 6, 042502 (2013). crossref(new window)

Y.-S. No, J.-H. Choi, H.-S. Ee, M.-S. Hwang, K.-Y. Jeong, E.-K. Lee, M.-K. Seo, S.-H. Kwon, and H.-G. Park, “A double-strip plasmonic waveguide coupled to an electrically driven nanowire LED,” Nano Lett. 13, 772-776 (2013). crossref(new window)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photon. 2, 496-500 (2008). crossref(new window)

J.-H. Kang, K. Kim, H.-S. Ee, Y.-H. Lee, T.-Y. Yoon, M.-K. Seo, and H.-G. Park, "Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas," Nat. Commun. 2, 582 (2011) [DOI: 10.1038/ncomms1592]. crossref(new window)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333-337 (2011). crossref(new window)

N. Large, M. Abb, J. Aizpurua, and O. L. Muskens, “Photo-conductively loaded plasmonic nanoantenna as building block for ultracompact optical switches,” Nano Lett. 10, 1741-1746 (2010). crossref(new window)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629-632 (2009). crossref(new window)

S.-K. Kim, H.-S. Ee, W. Choi, S.-H. Kwon, J.-H. Kang, Y.-H. Kim, H. Kwon, and H.-G. Park, "Surface-plasmon-induced light absorption on a rough silver surface," Appl. Phys. Lett. 98, 011109 (2011). crossref(new window)

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594-597 (2009). crossref(new window)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). crossref(new window)

N. Garcia and E. Stoll, “Monte Carlo calculation for electromagnetic-wave scattering from random rough surfaces,” Phys. Rev. Lett. 52, 1798-1801 (1984). crossref(new window)