JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Convex Optimization Approach to Multi-Level Modulation for Dimmable Visible Light Communications under LED Efficiency Droop
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Convex Optimization Approach to Multi-Level Modulation for Dimmable Visible Light Communications under LED Efficiency Droop
Lee, Sang Hyun; Park, Il-Kyu; Kwon, Jae Kyun;
  PDF(new window)
 Abstract
This paper deals with a design method and capacity loss of an efficient multi-level modulation scheme for dimmable visible light communications (VLC) systems that use light-emitting diodes (LEDs) with efficiency droop. To this end, the impact of such an impairment on dimmable VLC is addressed with respect to multi-level modulations based on pulse-amplitude modulation (PAM) via data-rate optimization formulation.
 Keywords
Visible light communications;Efficiency droop;Dimming;Convex optimization;
 Language
Korean
 Cited by
 References
1.
T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100-107 (2004). crossref(new window)

2.
H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag. 49, 56-62 (2011).

3.
S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: Modulation schemes and dimming support,” IEEE Commun. Mag. 50, 72-82 (2012).

4.
G. Ntogari, T. Kamalakis, J. W. Walewski, and T. Sphicopoulos, “Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone,” IEEE/OSA J. Opt. Commun. Netw. 3, 56-65 (2011). crossref(new window)

5.
K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE Photon. Technol. Lett. 23, 1136-1138 (2011). crossref(new window)

6.
J. K. Kwon, “Inverse source coding for dimming in visible light communications using NRZ-OOK on reliable links,” IEEE Photon. Technol. Lett. 22, 1455-1457 (2010). crossref(new window)

7.
S. Hranilovic and F. R. Kschischang, “Optical intensitymodulated direct detection channels: signal space and lattice codes,” IEEE Trans. Inform. Theory 49, 1385-1399 (2003) crossref(new window)

8.
J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi A 207, 2217-2225 (2010). crossref(new window)

9.
J. Cho, E. F. Schubert, and J. K. Kim, “Efficiency droop in light-emitting diodes: challenges and countermeasures,” Laser Photonics Rev. 7, 408-421 (2013). crossref(new window)

10.
A. Lapidoth, S. M. Moser, and M. A. Wigger, “On the capacity of free-space optical intensity channels,” IEEE Trans. Inf. Theory 55, 4449-4461 (2009). crossref(new window)

11.
S. H. Lee, S.-Y. Jung, and J. K. Kwon, “Modulation and coding for dimmable visible light communication,” IEEE Commun. Mag. 53, 136-143 (2015).

12.
T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. (Wiley, NJ, USA, 2006).

13.
J. G. Smith, “The information capacity of amplitude and variance-constrained scalar Gaussian channels,” Information and Control 18, 203-219 (1971). crossref(new window)

14.
S. Shamai, “Capacity of a pulse amplitude modulated direct detection photon channel,” IEE Proc. I, Commun., Speech Vis. 137, 424-430 (1990). crossref(new window)

15.
S. Boyd and L. Vandenberghe, Convex Optimization, 1st ed. (Cambridge Press, UK, 2004).

16.
CVX Research, Inc., CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 Beta, http://cvxr.com/cvx (2012).