Advanced SearchSearch Tips
Role of Arbitrary Intensity Profile Laser Beam in Trapping of RBC for Phase-imaging
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Role of Arbitrary Intensity Profile Laser Beam in Trapping of RBC for Phase-imaging
Kumar, Ranjeet; Srivastava, Vishal; Mehta, Dalip Singh; Shakher, Chandra;
  PDF(new window)
Red blood cells (RBCs) are customarily adhered to a bio-functionalised substrate to make them stationary in interferometric phase-imaging modalities. This can make them susceptible to receive alterations in innate morphology due to their own weight. Optical tweezers (OTs) often driven by Gaussian profile of a laser beam is an alternative modality to overcome contact-induced perturbation but at the same time a steeply focused laser beam might cause photo-damage. In order to address both the photo-damage and substrate adherence induced perturbations, we were motivated to stabilize the RBC in OTs by utilizing a laser beam of ‘arbitrary intensity profile’ generated by a source having cavity imperfections per se. Thus the immobilized RBC was investigated for phase-imaging with sinusoidal interferograms generated by a compact and robust Michelson interferometer which was designed from a cubic beam splitter having one surface coated with reflective material and another adjacent coplanar surface aligned against a mirror. Reflected interferograms from bilayers membrane of a trapped RBC were recorded and analyzed. Our phase-imaging set-up is limited to work in reflection configuration only because of the availability of an upright microscope. Due to RBC’s membrane being poorly reflective for visible wavelengths, quantitative information in the signal is weak and therefore, the quality of experimental results is limited in comparison to results obtained in transmission mode by various holographic techniques reported elsewhere.
Laser resonators;Miniaturized Michelson interferometer;Optical tweezers;Human RBC;Interferometric phase-imaging;
 Cited by
Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip, Scientific Reports, 2016, 6, 1  crossref(new windwow)
3-D optical profilometry at micron scale with multi-frequency fringe projection using modified fibre optic Lloyd’s mirror technique, Optics and Lasers in Engineering, 2018, 105, 14  crossref(new windwow)
Y. L. Wang and D. E. Discher, Methods in Cell Biology - Cell Mechanics (Elsevier Press, 2008), vol. 83.

S. Suresh, “Mechanical response of human red blood cells in health and disease: some structure-property-function relationships,” J. Mater. Res. 21, 1871-1877 (2006). crossref(new window)

Y. K. Park, M. D. Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. National Academy of Sciences 105, 13730-13735 (2008). crossref(new window)

H. S. Byun, T. R. Hillman, J. M. Higgins, M. D. Silva, Z. Peng, M. Dao, R. R. Dasari, S. Suresh, and Y. K. Park, “Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient,” Acta Biomaterialia 8, 4130-4138 (2012). crossref(new window)

K. K. Williams, Hematology (McGraw-Hill Medical, New York, USA, 2010).

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of interaction of RBC with optical tweezers,” Opt. Express 13, 4745-4751 (2005). crossref(new window)

A. Ghosh, S. Sinha, J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, J. Samuel, S. Sharma, and D. Mathur, “Euler buckling-induced folding and rotation of red blood cells in an optical trap,” Phys. Biol. 3, 67-73 (2006). crossref(new window)

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85, 6048-6051 (2004). crossref(new window)

S. C. Gifford, J. Derganc, S. S. Shevkoplyas, T. Yoshida, and M. W. Bitensky, “A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence,” British Journal of Heamatology 135, 395-404 (2006). crossref(new window)

E. Y. Parshina, A. S. Sarycheva, A. I. Yusipovich, N. A. Brazhe, E. A. Goodilin, and G. V. Maksimov, “Combined Raman and atomic force microscopy study of hemoglobin distribution inside erythrocytes and nanoparticle localization on the erythrocyte surface,” Laser Phys. Lett. 10, 075607 (2013). crossref(new window)

M. Friebel and M. Meinke, “Determination of the complex refractive index of highly concentrated haemoglobin solutions using transmittance and reflectance measurements,” J. Biomed. Opt. 10, 064019 (2005). crossref(new window)

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill Professional, 2011).

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors 13, 4170-4191 (2013). crossref(new window)

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6694-7001 (1999).

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter optimized digital holographic microscope for high-resolution living cell analysis,” Appl. Opt. 43, 6536-6544 (2004). crossref(new window)

C. J. Carl, L. F. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005). crossref(new window)

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic–phase contrast imaging of living cells,” J. Biomed. Opt. 16, 026014:1-4 (2011).

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). crossref(new window)

A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing digital holographic imaging of small biological specimens,” Opt. Express 20, 23617-23622 (2012). crossref(new window)

G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503-2505 (2004). crossref(new window)

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for investigating fast dynamics in transparent systems,” Opt. Lett. 10, 1165-1167 (2005).

N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy,” J. Phys. Chem. A 113, 13327-13330 (2009). crossref(new window)

G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett. 31, 775-777 (2006). crossref(new window)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Meth. 4, 717-719 (2007). crossref(new window)

Y. K. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. National Academy of Sciences 107, 6731-6736 (2010). crossref(new window)

M. Sarmis, B. Simon, M. Debailleul, B. Colicchio, V. Georges, J. J. Delaunay, and O. Haeberlé, “High resolution reflection tomographic diffractive microscopy,” J. Mod. Opt. 57, 740-745 (2010). crossref(new window)

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three dimensional profiling and tracking,” Opt. Eng. 52, 112306 (2014).

B. Rappaz, F. Charrière, C. Depeursinge, P. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt Lett. 33, 744-746 (2008). crossref(new window)

F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: Morphometry of testate amoeba,” Opt. Express 14, 7005-7013 (2006). crossref(new window)

B. Kemper, P. Langehanenberg, A. Höink, G. von Bally, F. Wottowah, S. Schinkinger, J. Guck, J. Käs, I. Bredebusch, J. Schnekenburger, and K. Schütze, “Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy,” J. Biophoton. 3, 425-431 (2010). crossref(new window)

B. Kemper, I. Bredebusch, W. Domschke, S. Kosmeier, P. Langehanenberg, J. Schnekenburger, and G. von Bally, “Integral refractive index determination of living suspension cells by multifocus digital holographic phase contrast microscopy,” J. Biomed. Opt. 12, 054009 (2007). crossref(new window)

B. Kemper, J. Wibbeling, L. Kastl, J. Schnekenburger, and S. Ketelhut, "Continuous morphology and growth monitoring of different cell types in a single culture using quantitative phase microscopy," Proc. SPIE 9529, 952902:1-7 (2015).

B. Kemper and G. von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008). crossref(new window)

E. Evans and Y. C. Fung, “Improved measurements of the erythrocyte geometry,” Micro Vascular Research 4, 335-347 (1972).

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy and impedance volume analyzer,” Cytometry A 73, 895-903 (2008).

K. R. Lee and Y. K. Park, “Quantitative phase imaging unit,” Opt. Lett. 39, 3630-3633 (2014). crossref(new window)

K. H. Kim, Z. Yaqoob, K. R. Lee, J. W. Kang, Y. Choi, P. Hosseini, P. T. C. So, and Y. K. Park, “Diffraction optical tomography using a quantitative phase imaging unit,” Opt. Lett. 39, 6935-6938 (2014). crossref(new window)

T. Colomb, S. Krivec, H. Hutter, A. A. Akatay, N. Pavillon, F. Montfort, E. Cuche, J. Kühn, C. Depeursinge, and Y. Emery, “Digital holographic reflectometry,” Opt. Express 18, 3719-3731 (2010). crossref(new window)

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab on a Chip 13, 4512-4516 (2013). crossref(new window)

M. D. Panah, S. Zwick, F. Schaal, M. Warber, B. Javidi, and W. Osten, “3D holographic imaging and trapping for non-invasive cell identification and tracking,” J. Display Technol. 6, 490-499 (2010). crossref(new window)

A. R. Moradi, M. K. Ali, M. D. Panah, A. Anand, and B. Javidi, “Detection of calcium induced morphological changes of living cells using optical traps,” IEEE Photon. J. 2, 775-783 (2010). crossref(new window)

M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40, 1881-1884 (2015). crossref(new window)

N. Cardenas and S. K. Mohanty, “Decoupling of geometric thickness and refractive index in quantitative phase microscopy,” Opt. Lett. 38, 1007-1009 (2013). crossref(new window)

Y. Kim, H. Shim, K. Kim, H. J. Park, S. Jang, and Y. K. Park, "Profiling individual human red blood cells using common-path diffraction optical tomography," Scientific Reports 4, 6659 (2014). crossref(new window)

K. H. Kim, J. G. Yoon, and Y. K. Park, “Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography,” Optica 2, 343-346 (2015). crossref(new window)

J. Jang, C. Y. Bae, J.-K. Park, and J. C. Ye, "Self-reference quantitative phase microscopy for microfluidic devices," Opt. Lett. 35, 514 (2010). crossref(new window)

N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016-2018 (2012). crossref(new window)

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, “Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics,” J. Biomed. Opt. 15 030503 (2010). crossref(new window)

P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytometry Part A 85, 1030-1036 (2014). crossref(new window)

S. Ruschin, E. Yaakobi, and E. Shekel, “Gaussian content as a laser beam quality parameter,” Appl. Opt. 50, 4376-4381 (2011). crossref(new window)

R. Kumar, C. Shakher, and D. S. Mehta, “Compact interferometric optical tweezers for patterned trapping and manipulation of polystyrene spheres and SWCNTs,” J. Mod. Opt. 57, 1157-1162 (2010). crossref(new window)


S. K. Mohanty and P. K. Gupta, “Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis,” Biotechnol. Lett. 26, 971-974 (2004). crossref(new window)

S. C. Grover, R. C. Gauthier, and A. G. Skirtach, “Analysis of the behaviour of erythrocytes in an optical trapping system,” Opt. Express 7, 533-539 (2000). crossref(new window)

M. Dao, C. T. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51, 2259-2280 (2003). crossref(new window)

M. Khan, H. Soni, and A. K. Sood, "Optical tweezer for probing erythrocyte membrane deformability," Appl. Phys. Lett. 95, 233703 (2009). crossref(new window)

J. A. Dharmadhikari and D. Mathur, “Using an optical trap to fold and align single red blood cells,” Current Science 86, 1432-1437 (2004).

W. Flugge, Handbook of Engineering Mechanics (McGraw-Hill, New York, USA, 1962).

J. W. Hutchinson, “Imperfection sensitivity of externally pressurized spherical shells,” J. Appl. Mech. 8, 49-55 (1967).

S. Timoshenko and J. M. Gere, Theory of Elastic Stability, 2nd ed. (McGraw-Hill, New York, USA, 1961).

G. Rusciano, “Experimental analysis of Hb oxy-deoxy transition in single optically stretched red blood cells,” Physica Medica 26, 233-239 (2010). crossref(new window)

R. M. Hochmuth, “Properties of red blood cells,” in Handbook of Bioengineering, R. Skalak and S. Chien eds. (McGraw-Hill, New York, USA, 1987).

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77, 3085-3095 (1999). crossref(new window)

C. T. Lim, M. Dao, S. Suresh, C. H. Sow, and K. T. Chew, “Large deformation of living cells using laser traps,” Acta Material 52, 1837-1845 (2004). crossref(new window)

N. Neve, S. S. Kohles, S. R. Winn, and D. C. Tretheway, “Manipulation of suspended single cells by microfluidics and optical tweezers,” Cellular and Molecular Bioengineering 3, 213-228 (2010). crossref(new window)

X. Wang, X.-B. Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” Journal of Electrostatics 39, 277-295 (1997). crossref(new window)

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594-4602 (1989). crossref(new window)

W. L. Collett, C. A. Ventrice, and S. M. Mahajan, “Electromagnetic wave technique to determine radiation torque on micromachines driven by light,” Appl. Phys. Lett. 82, 2730-2732 (2003). crossref(new window)

R. Paul and K. V. I. S. Kaler, “Effects of particle shape on electromagnetic torques: A comparison of the effective-dipolemoment method with the Maxwell-stress-tensor method,” Phys. Rev. E 48, 1491-1496 (1993). crossref(new window)

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443 (1988). crossref(new window)

H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169-179 (1998). crossref(new window)

J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration,” Appl. Opt. 43, 2532-2544 (2004). crossref(new window)

J. A. Lock, “Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force,” Appl. Opt. 43, 2545-2554 (2004). crossref(new window)

A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494-2507 (2002). crossref(new window)

P. C. Ke and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159-2168 (1998). crossref(new window)

R. W. Going, B. L. Conover, and M. J. Escuti, "Electrostatic force and torque description of generalized spheroidal particles in optical landscapes," Proc. SPIE 7038, 703826 (2008).

D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shape and size,” J. Opt. A: Pure Appl. Opt. 9, S228-S234 (2007). crossref(new window)

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613:1-14 (2007).

F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119-131 (2007). crossref(new window)

Y. S. Bae, J. I. Song, D. Har, and D. Y. Kim, “Beam propagation analysis on thickness measurements in quantitative phase microscopy,” Opt. Rev. 22, 532-538 (2015). crossref(new window)