Advanced SearchSearch Tips
Ghost Imaging with Different Speckle Sizes of Thermal Light
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Ghost Imaging with Different Speckle Sizes of Thermal Light
Jue, Wang; Renlong, Yu; Yu, Xin; Yanming, Shao; Yanru, Chen; Qi, Zhao;
  PDF(new window)
In this paper, we theoretically and experimentally analyze the impact of speckle size of pseudo-thermal light source on ghost imaging. A larger size of speckle can bring improvements in SNR and visibility. At the same time, the edge blur of the retrieved image will become more serious. We also present a setup which can mitigate the edge blur of larger speckle while maintaining the advantages of higher SNR and visibility by changing the speckle size of the object beam with a concave lens.
Ghost imaging;Coherence;Speckle size;Edge blur;
 Cited by
T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, 3429-3432 (1995). crossref(new window)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002). crossref(new window)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 93602 (2002).

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005). crossref(new window)

F. Ferri, D. Magatti, A. Gatti, and M. Bache, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005). crossref(new window)

L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006). crossref(new window)

F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008). crossref(new window)

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009). crossref(new window)

R. Meyers, K. S. Deacon, and Y. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008). crossref(new window)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009). crossref(new window)

P. Zerom, K. Wai, C. Chan, and J. C. Howell, “Entangledphoton compressive ghost imaging,” Phys. Rev. A 84, 061804(R) (2011). crossref(new window)

V. Katkovnik and J. Astola, “Compressive sensing computational ghost imaging,” J. Opt. Soc. Am. A 29, 1556-1567 (2012). crossref(new window)

J. Cheng, “Ghost imaging through turbulent atmosphere,” Opt. Express 17, 7916-7921 (2009). crossref(new window)

M. Bina, D. Magatti, and M. Molteni, “Backscattering differential ghost imaging in turbid media,” Phys. Rev. Lett. 110, 083901 (2013). crossref(new window)

F. Ferri, D. Magatti, and L. A. Lugiato, “Differential ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010). crossref(new window)

B. I. Erkmen and J. H. Shapiro, “Signal-to-noise ratio of Gaussian-state ghost imaging,” Phys. Rev. A 79, 023833 (2009). crossref(new window)

D. Magatti, A. Gatti, and F. Ferri, “Three-dimensional coherence of light speckles: Experiment,” Phys. Rev. A 79, 053831 (2009). crossref(new window)

A. Gatti, D. Magatti, and F. Ferri, “Three-dimensional coherence of light speckles: Theory,” Phys. Rev. A 78, 063806 (2008). crossref(new window)