Advanced SearchSearch Tips
Laser Speckle Contrast Imaging for Measuring Cerebral Blood Flow Changes Caused by Electrical Sensory Stimulation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Laser Speckle Contrast Imaging for Measuring Cerebral Blood Flow Changes Caused by Electrical Sensory Stimulation
Cho, Ahra; Yeon, Chanmi; Kim, Donghyeon; Chung, Euiheon;
  PDF(new window)
Recently laser speckle contrast (LSC) imaging has become a widely used optical method for in vivo assessment of blood flow in the animal brain. LSC imaging is useful for monitoring brain hemodynamics with relatively high spatio-temporal resolution. A speckle contrast imaging system has been implemented with electrical sensory stimulation apparatus. LSC imaging is combined with optical intrinsic signal imaging in order to measure changes in cerebral blood flow as well as neural activity in response to electrical sensory stimulation applied to the hindlimb region of the mouse brain. We found that blood flow and oxygen consumption are correlated and both sides of hindlimb activation regions are symmetrically located. This apparatus could be used to monitor spatial or temporal responses of cerebral blood flow in animal disease models such as ischemic stroke or cortical spreading depression.
Laser speckle contrast imaging;Cerebral blood flow;Functional activation;Brain imaging;
 Cited by
In vivo study of optical speckle decorrelation time across depths in the mouse brain, Biomedical Optics Express, 2017, 8, 11, 4855  crossref(new windwow)
Surface modeling method for aircraft engine blades by using speckle patterns based on the virtual stereo vision system, Optics Communications, 2018, 411, 33  crossref(new windwow)
A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” Journal of Cerebral Blood Flow & Metabolism 21, 195-201 (2001). crossref(new window)

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” Journal of Cerebral Blood Flow & Metabolism 24, 518-525 (2004). crossref(new window)

N. Li, X. Jia, K. Murari, R. Parlapalli, A. Rege, and N. V. Thakor, “High spatiotemporal resolution imaging of the neurovascular response to electrical stimulation of rat peripheral trigeminal nerve as revealed by in vivo temporal laser speckle contrast,” Journal of Neuroscience Methods 176, 230-236 (2009). crossref(new window)

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck, “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20, 2664-70 (2004). crossref(new window)

B. Weber and F. Helmchen, Optical Imaging of Neocortical Dynamics (Springer, 2014).

B. M. Ances, D. G. Buerk, J. H. Greenberg, and J. A. Detre, “Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats,” Neurosci. Lett. 306, 106-10 (2001). crossref(new window)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using multi-exposure speckle imaging,” Journal of Cerebral Blood Flow & Metabolism 33, 798-808 (2013). crossref(new window)

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express 2 1553-63 (2011). crossref(new window)

S. M. Kazmi, L. M. Richards, C. J. Schrandt, M. A. Davis, and A. K. Dunn, “Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow,” J. Cereb. Blood Flow Metab. 35, 1076-84 (2015). crossref(new window)

A. Nadort, R. G. Woolthuis, T. G. van Leeuwen, and D. J. Faber, “Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy,” Biomed. Opt. Express 4, 2347-2361 (2013). crossref(new window)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-9 (1996). crossref(new window)

J. D. Briers and X.-W. He, "Laser speckle contrast analysis (LASCA) for blood flow visualization: improved image processing," in Proc. BiOS'98 International Biomedical Optics Symposium (1998), pp. 26-33.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res. 68, 143-6 (2004). crossref(new window)

A. K. Dunn, A. Devor, A. M. Dale, and D. A. Boas, “Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex,” Neuroimage 27, 279-90 (2005). crossref(new window)

A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28, 28-30 (2003). crossref(new window)

J. D. Briers, "Laser speckle contrast imaging for measuring blood flow," Optica Applicata 37, 139 (2007).

H. Li, Q. Liu, H. Lu, Y. Li, H. F. Zhang, and S. Tong, “Directly measuring absolute flow speed by frequency-domain laser speckle imaging,” Opt. Express 22, 21079-87 (2014). crossref(new window)

R. D. Frostig, E. E. Lieke, D. Y. Ts'o, and A. Grinvald, "Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals," Proc. National Academy of Sciences 87, 6082-6086 (1990). crossref(new window)

N. A. Scott and T. H. Murphy, “Hemodynamic responses evoked by neuronal stimulation via channelrhodopsin-2 can be independent of intracortical glutamatergic synaptic transmission,” PloS One 7, e29859 (2012). crossref(new window)

T. C. Harrison, A. Sigler, and T. H. Murphy, “Simple and cost-effective hardware and software for functional brain mapping using intrinsic optical signal imaging,” Journal of Neuroscience Methods 182, 211-218 (2009). crossref(new window)

M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17, 15670-8 (2009). crossref(new window)

H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559-64 (2003). crossref(new window)

C. H. Chen-Bee, T. Agoncillo, Y. Xiong, and R. D. Frostig, “The triphasic intrinsic signal: implications for functional imaging,” J. Neurosci. 27, 4572-4586 (2007). crossref(new window)

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, "Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation," Proc. National Academy of Sciences 94, 14826-14831 (1997). crossref(new window)

D. H. Lim, M. H. Mohajerani, J. LeDue, J. Boyd, S. Chen, and T. H. Murphy, “In vivo large-scale cortical mapping using channelrhodopsin-2 stimulation in transgenic mice reveals asymmetric and reciprocal relationships between cortical areas,” Frontiers in Neural Circuits 6, (2012).

M. Li, P. Miao, Y. Zhu, and S. Tong, “Functional laser speckle imaging of cerebral blood flow under hypothermia,” J. Biomed. Opt. 16, 086011 (2011). crossref(new window)