Advanced SearchSearch Tips
Single Exposure Imaging of Talbot Carpets and Resolution Characterization of Detectors for Micro- and Nano- Patterns
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Single Exposure Imaging of Talbot Carpets and Resolution Characterization of Detectors for Micro- and Nano- Patterns
Kim, Hyun-su; Danylyuk, Serhiy; Brocklesby, William S.; Juschkin, Larissa;
  PDF(new window)
In this paper, we demonstrate a self-imaging technique that can visualize longitudinal interference patterns behind periodically-structured objects, which is often referred to as Talbot carpet. Talbot carpet is of great interest due to ever-decreasing scale of interference features. We demonstrate experimentally that Talbot carpets can be imaged in a single exposure configuration revealing a broad spectrum of multi-scale features. We have performed rigorous diffraction simulations for showing that Talbot carpet print can produce ever-decreasing structures down to limits set by mask feature sizes. This demonstrates that large-scale pattern masks may be used for direct printing of features with substantially smaller scales. This approach is also useful for characterization of image sensors and recording media.
Talbot effect;Self-imaging;Micro-imaging;Nano-structuring;Extreme ultraviolet;
 Cited by
Enhanced sampling of 2D interference patterns, Applied Optics, 2017, 56, 7, 1977  crossref(new windwow)
O. Friesch, W. Schleich, and I. Marzoli, “Quantum carpets woven by Wigner functions,” New J. Phys. 2, 4 (2000). crossref(new window)

M. Chapman, “Near-field imaging of atom diffraction gratings the atomic Talbot effect,” Phys. Rev. A 51, R14 (1995). crossref(new window)

M. R. Dennis, N. I. Zheludev, and F. J. G. Abajo, “The plasmon Talbot effect,” Opt. Express 15, 9692-9700 (2007). crossref(new window)

S. Cherukulappurath, D. Heinis, J. Cesario, N. F. Hulst, S. Enoch, and R. Quidant, “Local observation of plasmon focussing in Talbot carpets,” Opt. Express 17, 23772-23784 (2009). crossref(new window)

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139-2164 (1996). crossref(new window)

M. Berry, I. Marzoli, and W. Schleich, “Quantum carpets, carpets of light,” Physics World June, 1-6 (2001).

M. Segev, M. Soljačić, and J. M. Dudley, “Fractal optics and beyond,” Nature Photonics 6, 209-210 (2012). crossref(new window)

G. E. Moore, “Cramming more components onto integrated circuits,” Electronics Magazine 38, 114-117 (1965).

The International Technology Roadmap for Semiconductors, (2013).

H. F. Talbot, “Facts relating to optical science No. IV,” Philos. Mag. 9, Series 3, 401-407 (1836).

L. Rayleigh, “XXV. On diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. 11, Series 5, 196-205 (1881). crossref(new window)

J. M. Cowley and A. F. Moodie, “Fourier images I - The point source,” Proc. Phys. Soc. B 70, 486-496 (1957). crossref(new window)

W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772-775 (1967). crossref(new window)

R. F. Edgar, “The Fresnel diffraction images of periodic structures,” Opt. Acta 16, 281-287 (1969). crossref(new window)

P. Latimer and R. F. Crouse, “Talbot effect reinterpreted,” Appl. Opt. 31, 80-89 (1992). crossref(new window)

H. C. Rosu, J. P. Trevino, H. Cabrera, and J. S. Murguia, “Self-image effects in diffraction and dispersion,” Electromagnetic Phenomena 6, 216-223 (2006).

S. Nowak, Ch. Kurtsiefer, T. Pfau, and C. David, “High-order Talbot fringes for atomic matter waves,” Opt. Lett. 22, 1430-1432 (1997). crossref(new window)

W. B. Case, M. Tomandl, S. Deachapunya, and M. Arndt, “Realization of optical carpets in the Talbot and Talbot-Lau configurations,” Opt. Express 17, 20966-20974 (2009). crossref(new window)

N. Guerineau, E. D. Mambro, and J. Primot, “Talbot experiment re-examined: study of the chromatic regime and application to spectrometry,” Opt. Express 11, 3310-3319 (2003). crossref(new window)

N. Guerineau, B. Harchaoui, and J. Primot, “Talbot experiment re-examined: demonstration of an achromatic and continuous self-imaging regime,” Opt. Commun. 180, 199-203 (2000). crossref(new window)

N. Mojarad, J. Gobrecht, and Y. Ekinci, “Beyond EUV lithography: a comparative study of efficient photoresists performance,” Scientific Reports 5, 1-7 (2015). crossref(new window)

A. Erdmann, P. Evanschitzky, G. Citarella, T. Fühner, and P. De Bisschop, “Rigorous mask modeling using waveguide and FDTD methods: An assessment for typical hyper na imaging problems andreas,” Proc. SPIE 6283, 628319-1~628319-11 (2006).

S. Danylyuk, P. Loosen, K. Bergmann, H.-S. Kim, and L. Juschkin, “Scalability limits of Talbot lithography with plasma-based extreme ultraviolet sources,” J. Micro/Nanolith. MEMS MOEMS 12, 033002-1~033002-7 (2013). crossref(new window)

H. H. Solak and Y. Ekinci, “Achromatic spatial frequency multiplication: A method for production of nanometer-scale periodic structures,” J. Vac. Sci. Technol. B 23, 2705-2710 (2005). crossref(new window)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw Hill, New York, USA, 1996).

J. A. Thomas, "Binaere phasenelemente in photoresist," Diploma Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany (1988).

S. Brose, S. Danylyuk, L. Juschkin, C. Dittberner, K. Bergmann, J. Moers, G. Panaitov, St. Trellenkamp, P. Loosen, and D. Grützmacher, “Broadband transmission masks, gratings and filters for extreme ultraviolet and soft X-ray lithography,” Thin Solid Films 520, 5080-5085 (2012). crossref(new window)

X-ray Database,

B. Mandelbrot, “How long is the coast of Britain? Statistical self-similarity and fractional dimension,” Science 156, 636-638 (1967). crossref(new window)

K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics XXVII, E. Wolf, ed. (Elsevier Science Publishers, Warsaw, Poland, 1989), pp. 2-108.

J. Wen, Y. Zhang, and M. Xiao, “The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics,” Advances in Optics and Photonics 5, 83-130 (2013). crossref(new window)

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nature Photonics 4, 24-26 (2010). crossref(new window)

J. S. Chun, S.-H. Jen, K. Petrillo, C. Montgomery, D. Ashworth, M. Neisser, T. Saito, L. Huli, and D. Hetzer, “SEMATECH’s cycles of learning test for EUV photoresist and its applications for process improvement,” Proc. SPIE 9048, 90481Z (2014).

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189-193 (2006). crossref(new window)

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths,” Nature 383, 699-702 (1996). crossref(new window)

M. Reed, J. Randall, R. Aggarwal, R. Matyi, T. Moore, and A. Wetsel, “Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,” Phys. Rev. Lett. 60, 535-537 (1988). crossref(new window)