Advanced SearchSearch Tips
Design and Simulation of Two-Dimensional OCDMA En/Decoder Composed of Double Ring Add/Drop Filters and Delay Waveguides
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Design and Simulation of Two-Dimensional OCDMA En/Decoder Composed of Double Ring Add/Drop Filters and Delay Waveguides
Chung, Youngchul;
  PDF(new window)
A two-dimensional optical code division multiple access (OCDMA) en/decoder composed of four double-ring resonator add/drop filters and three delay waveguides is designed, and a transfer matrix method combined with fast Fourier transform is implemented to provide numerical simulations for the en/decoder. The auto-correlation peak level over the maximum cross-correlation level is larger than 3 at the center of the correctly decoded pulse for most of wavelength hopping and spectral phase code combinations, which assures the BER lower than 10-3 which corresponds to the forward error correction limit.
Ring resonator;Optical code division multiple access;Transfer matrix method;
 Cited by
Z. Wang, M. P. Fok, and R. Pruncnal, “Physical encoding in optical layer security,” J. Cyber Security and Mobility 1, 83-100 (2012).

J. P. Heratage and A. M. Weiner, “Advances in spectral optical code division multiple access,” IEEE J. Quantum. Electron. 13, 1351-1369 (2007). crossref(new window)

J. A. Salihi, “Code division multiple-access technique in optical fiber networks, Part I: Fundamental principles,” IEEE Trans. Commun. 37, 824-842 (1989). crossref(new window)

M. E. Marhic, “Trends in optical CDMA,” Proc. SPIE 1787, 80-98 (1992).

D. D. Sampson, G. J. Pendock, and R. A. Griffin, “Photonic code-division multiple-access communications,” Fiber Integr. Opt. 16, 126-157 (1997).

L. Tancevski and I. Andovovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett. 30, 1388-1390 (1994). crossref(new window)

L. Tancevski and I. Andonovic, “Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security,” IEEE J. Lightwave Technol. 14, 2636-2646 (1996). crossref(new window)

X. Wang and K. T. Chan, “A sequentially self-seeded Fabry-Perot laser for two-dimensional encoding/decoding of optical pulses,” IEEE J. Quantum Electron. 39, 83-90 (2003). crossref(new window)

P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings,” IEEE J. Lightwave Technol. 9, 1352-1365 (2001).

P. C. Teh, M. Ibsen, L. B. Fu, J. H. Lee, Z. Yusoff, and D. J. Richardson, “A 16-chnnel OCDMA system (4 OCDM 4 WDM) based on 16-chip, 20 Gchip/s superstructure fiber Bragg gratings and DFB fiber laser transmitters,” in Proc. Optical Fiber Communication Conference (OFC’2002) (Los Angeles, CA, USA, 2002), ThEE1, pp. 600-601.

A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Young, T. Banwell, B. E. Little, S. T. Chu, W. Chen, W. Chen, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan, and P. J. Delfyett, “Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications,” IEEE J. Lightwave Technol. 24, 77-87 (2006). crossref(new window)

I. X. Wang and Z. Gao, “Novel reconfigurable two-dimensional coherent optical en/decoder based on coupled micro-ring reflector,” IEEE Photon. Technol. Lett. 23, 591-593 (2011). crossref(new window)

Z. Ji, D. Jia, P. Nie, H. Zhang, D. Zhang, and Y. Zhang, “Two-dimensional coherent optical en/decoder using parallel-cascaded coupled third-order microring resonator,” Opt. Commun. 347, 123-129 (2015). crossref(new window)

J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12, 90-103 (2004). crossref(new window)

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” IEEE J. Lightwave Technol. 22, 1734-1740 (2004). crossref(new window)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” IEEE J. Lightwave Technol. 15, 998-1005 (1997). crossref(new window)

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, 2012), vol. 222.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100 G transport networks,” IEEE Communications Magazine 48, S48-S55 (2010). crossref(new window)