Advanced SearchSearch Tips
Broadband and Polarization Independent Terahertz Metamaterial Filters Using Metal-Dielectric-Metal Complementary Ring Structure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Broadband and Polarization Independent Terahertz Metamaterial Filters Using Metal-Dielectric-Metal Complementary Ring Structure
Qi, Limei;
  PDF(new window)
Broadband metal-dielectric-metal terahertz filters composed of complementary rings are designed and demonstrated. Four samples with different parameters were fabricated. Results measured using THz time-domain spectroscopy system show excellent agreement with simulations. Compared with the broadband filters reported before, the complementary ring structure in our design is insensitive to any polarization at normal incidence due to symmetry of the ring. Furthermore, the influence of structure parameters (such as period, radius, slot width, thickness and incidence angles) on the transmission characteristics has been investigated theoretically. The encouraging results afforded by designing of the filters could find applications in broadband sensors, terahertz communication systems, and other emerging terahertz technologies.
Broadband;Bandpass filter;Metamaterial;Polarization-independent;
 Cited by
Terahertz transmission control using polarization-independent metamaterials, Optics Express, 2017, 25, 10, 11436  crossref(new windwow)
V. D. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi 10, 509-514 (1968). crossref(new window)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000). crossref(new window)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). crossref(new window)

C. Lee, W. Shim, Y. Moon, and C. Seo, “Design of ultra-wide band-pass filter based on metamaterials applicable to microwave photonics,” J. Opt. Soc. Korea 16, 288-291 (2012). crossref(new window)

K. Fan, A. C. Strikwerda, X. Zhang, and R. D. Averitt, “Three dimensional broadband tunable terahertz metamaterials,” Physical Review B, Condensed Matter and Materials Physics 87, 2095-2100 (2013).

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active metamaterial terahertz devices,” Nature 444, 597-600 (2006). crossref(new window)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 (2007).

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99, 137401 (2007). crossref(new window)

R. Dickie, R. Cahill, V. F. Fusco, H. S. Gamble, and N. Mitchell, “THz frequency selective surface filters for earth observation remote sensing instruments,” IEEE Trans. Terahertz Sci. Technol. 2, 450-461 (2011).

X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, and W. Zhang, “Bilayer-fish-scale ultrabroad terahertz bandpass filter,” Opt. Lett. 37, 906-908 (2012). crossref(new window)

L. Wang, Z. Geng, X. He, Y. Cao, Y. Yang, and H. Chen, “Realization of band-pass and low-pass filters on a single chip in terahertz regime,” Optoelec. Lett. 11, 33-35 (2015). crossref(new window)

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission sub-wavelength hole arrays,” Opt. Lett. 31, 2637-2639 (2006). crossref(new window)

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-H. Park, and P. C. M. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14, 1253-1259 (2006). crossref(new window)

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92, 121103 (2008). crossref(new window)

J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647-2650 (2010). crossref(new window)

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and Perspectives,” IEEE Antennas and Propagation Magazine 49, 24-39 (2007).

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nature Communications 5, 3055 (2014).

J. Han, J. Gu, X. Lu, M. He, Q. Xing, and W. Zhang, “Broadband resonant terahertz transmission in a composite metal-dielectric structure,” Opt. Express 17, 16527-16534 (2009). crossref(new window)

Y. Chiang, C. Yang, Y. Yang, C. Pan, and T. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011). crossref(new window)

L. Liang, B. Jin, J. Wu, Y. Huang, Z. Ye, X. Huang, D. Zhou, G. Wang, X. Jia, H. Lu, L. Kang, W. Xu, J. Chen, and P. Wu, “A flexible wideband bandpass terahertz filter using multi-layer metamaterials,” Appl. Phys. B 113, 285-290 (2013).

M. Lu, W. Li, and E. R. Brown, “Second-order bandpass THz filter achieved by multilayer complementary metamaterial structures,” Opt. Lett. 36, 1071-1073 (2011). crossref(new window)

F. Lan, Z. Yang, L. Qi, X. Gao, and Z. Shi, “Terahertz dual-resonance bandpass filter using bilayer reformative comple-mentary metamaterial structures,” Opt. Lett. 39, 1709-1712 (2014). crossref(new window)

W. Pan, J. Chen, T. Duo, and Z. Liu, “Analysis and design of complementary ring type metamaterial filter in THz wave domain,” Telkomnika Indonesian Journal of Electrical Engineering 12, 5508-5513 (2014).

X. Liu, D. A. Powell, and A. Alù, “Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures,” Phys. Rev. B 84, 235106 (2011). crossref(new window)

J. Shu, W. Gao, and Q. Xu, “Fano resonance in concentric ring apertures,” Opt. Express 21, 11101-11106 (2013). crossref(new window)

J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22, 3747-3753 (2014). crossref(new window)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99, 147401 (2007). crossref(new window)

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). crossref(new window)

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009). crossref(new window)

B. A. Munk, Frequency Selective Surfaces: Theory and Design, 1st ed. (John Wiley and Sons Inc., 2000).

L. Qi, C. Li, G. Fang, and S. Li, “Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots,” Chinese Physics B 24, 107802 (2015). crossref(new window)

H. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, Mark Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15, 1084-1095 (2007). crossref(new window)