JOURNAL BROWSE
Search
Advanced SearchSearch Tips
2 Gbit/s VLC Scheme Using Time-Frequency Color-Clustered MIMO Based on BCYR LEDs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
2 Gbit/s VLC Scheme Using Time-Frequency Color-Clustered MIMO Based on BCYR LEDs
Han, Phyu Phyu; Sewaiwar, Atul; Chung, Yeon-Ho;
  PDF(new window)
 Abstract
A 2 Gbit/s visible-light communication (VLC) scheme using time-frequency color-clustered (TFCC) multiple-input multiple-output (MIMO) based on blue, cyan, yellow, and red (BCYR) light-emitting diodes (LEDs) is presented. In the proposed scheme, BCYR LEDs are employed to form four different color clusters. Data transmission using the four color clusters is performed in MIMO, so that the scheme achieves a very high speed of data transmission. Moreover, the scheme employs the TFCC strategy to yield high performance in terms of bit error rate (BER). TFCC operates in such a way that the original data and the two delayed versions of the data are multiplied by orthogonal frequencies and then transmitted using a specific color of the BCYR LED. In the receiver, color filters are employed to detect the data transmitted from the desired cluster. Selection combining (SC) is also performed to yield a diversity effect within each color cluster, to further improve the performance. Performance evaluation demonstrates that the proposed TFCC MIMO VLC offers a data rate of 2 Gbit/s and a bit error rate of 4×10-5, at an Eb/No value of merely 3 dB.
 Keywords
Light emitting diodes;Optical MIMO;Color cluster;Time-frequency diversity;
 Language
English
 Cited by
 References
1.
C. X. Wang, F. Haider, X. Gao, X. H. You, Y. Yang, D. Yuan, H. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Comm. Mag. 52, 122-130 (2014).

2.
L. Zeng, D. O'brien, H. Minh, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting," IEEE J. Sel. Areas Comm. 27, 1654-1662 (2009). crossref(new window)

3.
Y. Hong, J. Chen, and C. Yu, “Performance improvement of the pre-coded multi-user MIMO indoor visible light communication system,” in Proc. 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP) (Manchester, UK, 2014), pp. 314-318.

4.
S. M. Kim and J. B. Jeon, “Experimental demonstration of 4x4 MIMO wireless visible light communication using a commercial CCD image sensor,” J. Information and Comm. Convergence Engineering 10, 220-224 (2012). crossref(new window)

5.
H. H. Lu, Y. P. Lin, P. Y. Wu, C. Y. Chen, M. C. Chen, and T. W. Jhang, “A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators,” Opt. Express 22, 3468-3474 (2014). crossref(new window)

6.
A. Azhar, T. Tran, and D. O’Brien, “A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications,” IEEE Photon. Technol. Lett. 25, 171-174 (2013). crossref(new window)

7.
R. Mesleh, R. Mehmood, H. Elgala, and H. Haas, “Indoor MIMO optical wireless communication using spatial modulation,” in Proc. IEEE International Conference on Communications (Cape Town, South Africa, May 2010), pp. 1-5.

8.
N. A. Tran, D. Luong, T. Thang, and A. Pham, “Performance analysis of indoor MIMO visible light communication systems,” in Proc. IEEE Fifth International Conference on Communications and Electronics (Danang, Vietnam, July 2014), pp. 60-64.

9.
P. P. Han, A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Color clustered multiple-input multiple-output visible light communication,” J. Opt. Soc. Korea 19, 74-79 (2015). crossref(new window)

10.
K. Bandara and Y. H. Chung, “Novel color-clustered multiuser visible light communication,” Trans. on Emerging Telecomm. Technol. 25, 579-590 (2014). crossref(new window)

11.
A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Novel user allocation scheme for full duplex multiuser bidirectional Li-Fi network,” Opt. Commun. 339, 153-156 (2015). crossref(new window)

12.
R. Singh, T. O’Farrell, and J. David, “An enhanced color shift keying modulation scheme for high-speed wireless visible light communications,” IEEE J. Lightwave Technol. 32, 2582-2592 (2014). crossref(new window)

13.
R. D. Koudelka and J. M. Woodall, "Light emitting devices with increased modulation bandwidth," http://www.eng.yale.edu/posters150/pdf/woodall2.pdf/

14.
Y. Pei, S. Zhu, H. Yang, L. Zhao, X. Yi, J. J. Wang, and J. Li, “LED modulation characteristics in a visible-light communication system,” Opt. and Photon. J. 3, 139-142 (2013). crossref(new window)

15.
C. H. Chen, M. Hargis, J. M. Woodall, M. R. Melloch, J. S. Reynolds, E. Yablonovitch, and W. Wang, “Ghz bandwidth gas light-emitting diodes,” Appl. Phys. Lett. 74, 3140-3142 (1999). crossref(new window)

16.
J. Kahn, R. You, P. Djahani, A. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Comm. Mag. 36, 88-94 (1998).

17.
T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer Electron. 50, 100-107 (2004). crossref(new window)

18.
P. Lumileds, "Luxeon Rebel and Luxeon Rebel ES," http://www.philipslumileds.com/products/luxeonrebel/luxeonrebel-color/

19.
A. Sewaiwar, S. V. Tiwari, and Y. H. Chung, “Smart LED allocation scheme for efficient multiuser visible light communication networks,” Opt. Express 23, 13015-13024 (2015). crossref(new window)