Advanced SearchSearch Tips
Transformation Optics Methodology for Changing the Appearance of an Object
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Transformation Optics Methodology for Changing the Appearance of an Object
Li, Yanxiu; Kong, Fanmin; Li, Kang;
  PDF(new window)
Transformation optics methodology provides a new pathway for designing novel devices. It is based on changing a material’s permittivity and permeability. A design for changing the appearance of an object by transformation optics methodology is proposed here. Through a certain transformation, the relations of the metric spaces and the calculation of the material parameters are derived, and the aim of changing the apparent size of an object can be realized. Full wave simulations are performed to validate the proposed device’s performance. It is possible to think that the methodology will improve the flexibility of designing interesting applications in microwave and optical regimes.
Transformation optics;Coordination transformation;Anisotropic media;Metamaterial;
 Cited by
U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006). crossref(new window)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). crossref(new window)

R. A. Crudo and J. G. O'Brien, "Metric approach to transfor­mation optics," Phys. Rev. A 80, 033824 (2009). crossref(new window)

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247 (2006) crossref(new window)

U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69-152 (2009). crossref(new window)

D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006). crossref(new window)

F. Zolla, S. Guenneau, A. Nicolet, and J. Pendry, “Electro­magnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32, 1069-1071 (2007). crossref(new window)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invarian coordinate transfor­mations of Maxwell’s equations,” Photon. Nano. Fund. Appl. 6, 87-95 (2008). crossref(new window)

N. Kundtz and D. R. Smith, “Extreme-angle broadband meta­material lens,” Nat. Mater. 9, 129-132 (2010). crossref(new window)

D. H. Kwon and D. H. Werner, “Transformation optics designs for wave collimators, flat lenses and right-angle bends,” New J. Phys. 10, 115023 (2008). crossref(new window)

D. Roberts, N. Kundtz, and D. Smith, “Optical lens com­pression via transformation optics,” Opt. Express 17, 16535-­16542 (2009). crossref(new window)

M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008). crossref(new window)

J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B. I. Wu, L. Ran, and J. A. Kong, “Application of coordinate transformation in bend waveguide,” J. Appl. Phys. 104, 014502 (2008). crossref(new window)

A. Nicolet, F. Zolla, and S. Guenneau, “A finite element modelling for twisted electromagnetic waveguides,” Eur. Phys. J. Appl. Phys. 289, 153-157 (2004).

M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008). crossref(new window)

M. Rahm, D. Roberts, J. Pendry, and D. Smith, “Transfor­mation-optics design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555-11567 (2008). crossref(new window)

P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Waveguide taper engineering using coordinate transformation technology,” Opt. Express 18, 767-772 (2010). crossref(new window)

J. Allen, N. Kundtz, D. A. Roberts, S. A. Cummer, and D. R. Smith, “Electromagnetic source transformations using superellipse equations,” Appl. Phys. Lett. 94, 194101 (2009). crossref(new window)

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experi­mental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84, 165111 (2011). crossref(new window)

W. Lu, Z. Lin, H. Chen, and C. Chan, “Transformation media based super focusing antenna,” J. Phys. D 42, 212002 (2009). crossref(new window)

Y. Luo, J. Zhang, L. X. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic source,” PIERS Online 4, 795-800 (2008). crossref(new window)

B. I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94, 244102 (2009). crossref(new window)

P. H. Tichit, S. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83, 155108 (2011). crossref(new window)

P. H. Tichit, S. Burokur, D. Germain, and A. de Lustrac, “Coordinate transformation based ultra-directive emission,” Electron. Lett. 47, 580-582 (2011). crossref(new window)

P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Transfor­mation media producing quasi-perfect isotripic emission,” Opt. Express 19, 20551-20556 (2011). crossref(new window)

P. H. Tichit, S. N. Burokur, and A. de Lustrac, “Reducing physical appearance of electromagnetic sources,” Opt. Express 21, 5053-5062 (2013). crossref(new window)