Advanced SearchSearch Tips
Performance Enhancement of Cavity Assisted Photonic Crystal De-Multiplexerin Slow Light Regime
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Performance Enhancement of Cavity Assisted Photonic Crystal De-Multiplexerin Slow Light Regime
Vadjed-Samiei, Mohammad-Hashem; Aghababaeian, Hassan;
  PDF(new window)
This study first proposes a new version of a photonic crystal based de-multiplexer operating under the slow light regime, secondly analyses the structure numerically to demonstrate de-multiplexing operation and finally studies the impact of light speed on the performance of the proposed structure. The operation wavelength is 1.55 µm. The study indicates that, by adjusting the speed of light, around 0.1C, in the main waveguide and in the output channels’ waveguides, an enhancement in the performance of the de-multiplexer will be gained.
Photonic crystal;Slow light;Optical de-multiplexer;
 Cited by
Ultra-wide band dispersionless slow light waveguides, Optical and Quantum Electronics, 2018, 50, 1  crossref(new windwow)
D. A. B Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166-1185 (2009). crossref(new window)

R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687-1706 (1993). crossref(new window)

P. Yeh and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Appl. Opt. 19, 2848-2855 (1980). crossref(new window)

H.-D. Jang, K.-S. Kim, J.-H. Lee, and J.-C. Jeong, “Transmission performance of 40 gb/s pm duobinary signals due to fiber nonlinearities in DWDM systems using VSB filtering techniques,” J. Opt. Soc. Korea 13, 354-360 (2009). crossref(new window)

D. T. H. Tan, K. Ikeda, S. Zamek, A. Mizrahi, M. P. Nezhad, A. V. Krishnamoorthy, J. E. C. K. Raj, X. Zheng, I. Shubin, Y. Luo, and Y. Fainman, “Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on siliconfor optical interconnects,” Opt. Express 19, 2401-2409 (2011). crossref(new window)

D. D. Do, J. W. An, N. Kim, and K. Y. Lee, “Gaussian apodization technique in holographic demultiplexer based on photopolymer,” J. Opt. Soc. Korea 7, 269-274 (2003). crossref(new window)

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823-1831 (2007). crossref(new window)

A. Rostami, F. Nazaria, H. A. Banaei, and A. Bahrami, “A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure,” Photonics Nanostruct. Fundam. Appl. 8, 14-22 (2010). crossref(new window)

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226-228 (2006). crossref(new window)

Y. Wu, K. Hsu and T. Shih, “Thirty-two-channel densewavelength-division multiplexer based on cascade two-dimensional photonic crystal waveguide structure,” J. Opt. Soc. Am. B 24, 2075-2080 (2007).

H. Benisty, C. Cambournac, F. Van Laere, and D. Van Thourhout, “Photonic-crystal demultiplexer with improved crosstalk by second-order cavity filtering,” IEEE J. Lightwave Technol. 28, 1201-1208 (2010). crossref(new window)

M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Lett. 28, 1525-1527 (2003). crossref(new window)

M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express 10, 1279-1284 (2002). crossref(new window)

F. S.-S. Chien, Y.-J. Hsu, W.-F. Hsieh, and S.-C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119-1125 (2004). crossref(new window)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4-11 (1998). crossref(new window)

S. Robinson and R. Nakkeeran, “Photonic crystal ring resonatorbased add drop filters: a review,” Opt. Eng. 52, 060901-1~060901-11 (2013). crossref(new window)

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219-226 (2007). crossref(new window)

T. F. Krauss, “Why do we need slow light,” Nature Photon. 2, 448-450 (2008). crossref(new window)

J. M. Brosi, “Slow-light photonic crystal devices for high-speed optical signal processing,” Karlsruhe Series in Photon. & Comm., vol. 4 (2008).

H. Aghababaeian and M. H. Vadjed Samiei, “Compact and temperature independent electro-optic switch based on slotted silicon photonic crystal directional coupler,” J. Opt. Soc. Korea 16, 282-287 (2012). crossref(new window)

A. Akosman, M. Mutlu, H. Kurt, and E. Ozbay, “Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides,” Opt. Express 19, 24129-24138 (2011). crossref(new window)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys. 40, 2666-2670 (2007). crossref(new window)

T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D: Appl. Phys. 40, 2659-2665 (2007). crossref(new window)

H. Aghababaeian, M. H. Vadjed-Samiei, and N. Granpayeh, “Temperature stabilization of group index in silicon slotted photonic crystal waveguides,” J. Opt. Soc. Korea 15, 398-402 (2011). crossref(new window)

A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866-4868 (2004). crossref(new window)