Advanced SearchSearch Tips
Effect of the Liquid Density Difference on Interface Shape of Double-Liquid Lens
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of the Liquid Density Difference on Interface Shape of Double-Liquid Lens
Kong, Meimei; Zhu, Lingfeng; Chen, Dan; Liang, Zhongcheng; Zhao, Rui; Xu, Enming;
  PDF(new window)
The effect of the liquid density difference on interface shape of a double-liquid lens is analyzed in detail. The expressions of interface shape of two liquids with liquid density difference are analyzed and fitted with “even asphere”. The imaging analysis of the aspheric interface shape of a double-liquid lens is presented. The results show that the density difference of two liquids can cause the interface to be an aspheric surface, which can improve the image quality of a double-liquid lens. The result provides a new selection for the related further research and a wider application field for liquid lenses.
Double-liquid lens;Aspheric interface;Zemax;
 Cited by
Research of the human eye model with variable-focus liquid lens, Microfluidics and Nanofluidics, 2017, 21, 3  crossref(new windwow)
R. Marks, D. L. Mathine, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Astigmatism and defocus wavefront correction via Zernike modes produced with fluidic lenses,” Appl. Opt. 48, 3580-3587 (2009). crossref(new window)

F. C. Wippermann, P. Schreiber, A. Bräuer, and P. Craen, "Bifocal liquid lens zoom objective for mobile phone applications," Proc. SPIE 6501, 650109 (2007).

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130 (2004). crossref(new window)

F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33, 291 (2008). crossref(new window)

E. Simon, B. Berge, F. Fillit, H. Gaton, M. Guillet, O. Jacques-Sermet, F. Laune, J. Legrand, M. Maillard, and N. Tallaron, “Optical design rules of a camera module with a liquid lens and principle of command for AF and OIS functions,” Proc. SPIE 7849, 784903 (2010).

M. Maillard, J. Legrand, and B. Berge, “Two liquids wetting and low hysteresis electrowetting on dielectric applications,” Langmuir 25, 6162-6167 (2009). crossref(new window)

R. Peng, D. Wang, Z. Hu, J. Chen, and S. Zhuang, “Focal length hysteresis of a double-liquid lens based on electrowetting,” J. Opt. 15, 205-216 (2013).

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006). crossref(new window)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” European Physical Journal E 3, 159-163 (2000). crossref(new window)

Y. Xiong, R. Peng, J. Chen, and S. Zhuang, “Influence of liquid density on the property of double- liquid lens,” Optical Instruments 30, 24-26 (2008). (in Chinese)

S. Hartland, Surface and Interfacial Tension: Measurement, Theory, and Applications (Academic, New York, USA, 2004), pp. 159-167.