JOURNAL BROWSE
Search
Advanced SearchSearch Tips
High-precision THz Dielectric Spectroscopy of Tris-HCl Buffer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
High-precision THz Dielectric Spectroscopy of Tris-HCl Buffer
Lee, Soonsung; Kang, Hyeona; Do, Youngwoong; Lee, Gyuseok; Kim, Jinwoo; Han, Haewook;
  PDF(new window)
 Abstract
Tris-HCl buffer solution is extensively used in biochemistry and molecular biology to maintain a stable pH for biomolecules such as nucleic acids and proteins. Here we report on the high-precision THz dielectric spectroscopy of a 10 mM Tris-HCl buffer. Using a double Debye model, including conductivity of ionic species, we measured the complex dielectric functions of Tris-HCl buffer. The fast relaxation time of water molecules in Tris-HCl buffer is ~20% longer than that in pure water while the slow relaxation time changes little. This means that the reorientation dynamics of Tris-HCl buffer with such a low Tris concentration is quite different from that of pure water.
 Keywords
THz time-domain spectroscopy;Debye relaxation;Tris-HCl buffer;
 Language
English
 Cited by
 References
1.
G. Gomori, “Buffers in the range of pH 6.5 to 9.6,” Exp. Biol. Med. 62, 33-34 (1946). crossref(new window)

2.
A. Shundrovsky, C. L. Smith, J. T. Lis, C. L. Peterson, and M. D. Wang, “Proving SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules,” Nat. Struct. Mol. Biol. 13, 549-554 (2006). crossref(new window)

3.
M. I. Wallace, L. Ying, S. Balasubramanian, and D. Klenerman, “FRET Fluctuation Spectroscopy: exploring the conformational dynamics of a DNA hairpin loop,” J. Phys. Chem. B. 104, 11551-11555 (2000). crossref(new window)

4.
T. Bentin and P. E. Nielsen, “Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA “breathing” dynamics,” Biochem. 35, 8863-8869 (1996). crossref(new window)

5.
T. Tanaka and H. Hidaka, “Hydrophobic regions function in calmodulin-enzyme(s) interactions,” J. Biol. Chem. 255, 11078-11080 (1980).

6.
J. Wang, E. Palecek, P. E. Nielsen, G. Rivas, X. Cai, H. Shiraishi, N. Dontha, D. Luo, and P. A. M. Farias, “Peptide nucleic acid probes for sequence-specific DNA biosensors,” J. Am. Chem. Soc. 118, 7667-7670 (1996). crossref(new window)

7.
P. Arenkov, A. Kukhtin, A. Gemmell, S. Voloshchuk, V. Chupeeva, and A. Mirzabekov, “Protein microchips: use for immunoassay and enzymatic reactions,” Anal. Biochem. 278, 123-131 (2000). crossref(new window)

8.
Z. Chang, H. Fan, K. Zhao, M. Chen, P. He, and Y. Fang, “Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes,” Electroanal. 2, 131-136 (2008).

9.
Y. Heyman, A. Buxboim, S. G. Wolf, S. S. Daube, and R. H. Bar-Ziv, “Cell-free protein synthesis and assembly on a biochip,” Nat nanotechnol. 7, 374-378 (2012). crossref(new window)

10.
S. Siddiquee, K. Rovina, N. A. Yusof, and K. F. Rodrigues, “Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene,” Sens. Biosens. Res. 2, 16-22 (2014).

11.
A. Ulianas, L. Y. Heng, M. Ahmad, H. Y. Lau, Z. Ishak, and T. L. Ling, “A regenerable screen-printed DNA biosensor based on acrylic microsphere-gold nanoparticle composite for genetically modified soybean determination,” Sens. Actuators B 190, 694-701 (2016).

12.
P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52, 2438-2446 (2004). crossref(new window)

13.
J. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys 105, 102033 (2009). crossref(new window)

14.
B. M. Fischer, M. Walther, and P. Uhd Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47, 3807-3814 (2002). crossref(new window)

15.
A. G. Markelz, J. R. Knab, J. Y. Chen, and Y. He, “Protein dynamical transition in terahertz dielectric response,” Chem. Phys. Lett. 442, 413-417 (2007). crossref(new window)

16.
J. Xu, K. W. Plaxco, and S. J. Allen, “Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz,” J. Chem. Phys. 124, 036101 (2006). crossref(new window)

17.
B. Born, S. J. Kim, S. Ebbinghaus, M. Gruebele, and M. Havenith, “The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin,” Faraday. Discuss. 141, 161-173 (2009). crossref(new window)

18.
S. Oh, J. Son, O. Yoo, and D. Lee, “Terahertz characteristics of electrolytes in aqueous Luria-Bertani media,” J. Appl. Phys. 102, 074702 (2007). crossref(new window)

19.
A. Sihvola. Electromagnetic Mixing Formulas and Applications (IET Electromagnetic Waves Series 47, London, 1999).

20.
L. L. Latour, K. Svoboda, P. P. Mitra, and C. H. Sotak, “Time-dependent diffusion of water in a biological model system,” Proc. Natl. Acad. Sci. 91, 1229-1233 (1994). crossref(new window)

21.
E. M. Johnson, D. A. Berk, R. K. Jain, and W. M. Deen, “Hindered Diffusion in Agarose Gels: Test of Effective Medium Model,” Biophys. J. 70, 1017-1026 (1996). crossref(new window)

22.
S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).

23.
D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Indust. Appl. Math. 11, 431-441 (1963). crossref(new window)

24.
M. Koeberg, C. C. Wu, D. Kim, and M. Bonn, “THz dielectric relaxation of ionic liquid: water mixtures,” Chem. Phys. Lett. 439, 60-64 (2007). crossref(new window)