Advanced SearchSearch Tips
Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Plant Pathology Journal
  • Volume 31, Issue 4,  2015, pp.323-333
  • Publisher : Korean Society of Plant Pathology
  • DOI : 10.5423/PPJ.RW.08.2015.0150
 Title & Authors
Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity
Park, Chang-Jin; Seo, Young-Su;
  PDF(new window)
As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.
chaperones;heat shock proteins;plant immunity;
 Cited by
Transcriptomic responses to conspecific and congeneric competition in co-occurring Trifolium, Journal of Ecology, 2017, 105, 3, 602  crossref(new windwow)
Responses of Plant Proteins to Heavy Metal Stress—A Review, Frontiers in Plant Science, 2017, 8  crossref(new windwow)
Proteomics towards the understanding of elicitor induced resistance of grapevine against downy mildew, Journal of Proteomics, 2017, 156, 113  crossref(new windwow)
Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity, Proteomes, 2016, 4, 3, 26  crossref(new windwow)
Transcriptome profiling in leaves representing aboveground parts of apple replant disease affected Malus domestica ‘M26’ plants, Scientia Horticulturae, 2017, 222, 111  crossref(new windwow)
In retrospect: Eighty years of stress, Nature, 2016, 539, 7628, 175  crossref(new windwow)
An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding, International Journal of Biological Macromolecules, 2017, 102, 367  crossref(new windwow)
Simultaneous Improvement and Genetic Dissection of Salt Tolerance of Rice (Oryza sativa L.) by Designed QTL Pyramiding, Frontiers in Plant Science, 2017, 8  crossref(new windwow)
Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection, New Phytologist, 2017, 215, 3, 1156  crossref(new windwow)
Identification, Characterization and Expression Profiling of Stress-Related Genes in Easter Lily (Lilium formolongi), Genes, 2017, 8, 7, 172  crossref(new windwow)
Alterations in the proteome of wheat primary roots after wortmannin application during seed germination, Acta Physiologiae Plantarum, 2017, 39, 10  crossref(new windwow)
Chloroplast Hsp70 Isoform Is Required for Age-Dependent Tissue Preference of Bamboo mosaic virus in Mature Nicotiana benthamiana Leaves, Molecular Plant-Microbe Interactions, 2017, 30, 8, 631  crossref(new windwow)
Benefit of HSP90α intervention on ischemia-reperfusion injury of venous blood-congested flaps, Experimental and Therapeutic Medicine, 2016, 12, 1, 177  crossref(new windwow)
Global Transcriptome Analysis and Identification of Differentially Expressed Genes in Strawberry after Preharvest Application of Benzothiadiazole and Chitosan, Frontiers in Plant Science, 2017, 8  crossref(new windwow)
Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein ( HSP20 ) family genes in bread wheat, Journal of Plant Physiology, 2017, 211, 100  crossref(new windwow)
The heat-shock protein/chaperone network and multiple stress resistance, Plant Biotechnology Journal, 2017, 15, 4, 405  crossref(new windwow)
PredHSP: Sequence Based Proteome-Wide Heat Shock Protein Prediction and Classification Tool to Unlock the Stress Biology, PLOS ONE, 2016, 11, 5, e0155872  crossref(new windwow)
Overexpression of OsHSP18.0-CI Enhances Resistance to Bacterial Leaf Streak in Rice, Rice, 2017, 10, 1  crossref(new windwow)
Transcriptomic analysis of molecular responses in Malus domestica ‘M26’ roots affected by apple replant disease, Plant Molecular Biology, 2017, 94, 3, 303  crossref(new windwow)
Moderate virulence caused by the protist Labyrinthula zosterae in ecosystem foundation species Zostera marina under nutrient limitation, Marine Ecology Progress Series, 2017, 571, 97  crossref(new windwow)
Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold‐shock response in wheat, Plant Science, 2016, 253, 86  crossref(new windwow)
Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm), PLOS ONE, 2017, 12, 6, e0177883  crossref(new windwow)
Bubbling cell death: A hot air balloon released from the nucleus in the cold, Experimental Biology and Medicine, 2016, 241, 12, 1306  crossref(new windwow)
Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon, PLOS ONE, 2017, 12, 7, e0180352  crossref(new windwow)
Anderson, S. L., Shen, T., Lou J, Xing, L., Blachere, N. E., Srivastava, P. K. and Rubin, B. Y. 1994. The endoplasmic reticular heat shock protein gp96 is transcriptionally upregulated in interferon-treated cells. J. Exp. Med. 180:1565-1569. crossref(new window)

Bao, F., Huang, X., Zhu, C., Zhang, X., Li, X. and Yang, S. 2014. Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses. New Phytol. 202:1320-1334. crossref(new window)

Bhattarai, K. K., Li, Q., Liu, Y., Dinesh-Kumar, S. P. and Kaloshian, I. 2007. The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol. 144:312-323. crossref(new window)

Boevink, P. and Oparka, K. J. 2005. Virus-host interactions during movement processes. Plant Physiol. 138:1815-1821. crossref(new window)

Bosl, B., Grimminger, V. and Walter, S. 2006. The molecular chaperone Hsp104--a molecular machine for protein disaggregation. J. Struct. Biol. 156:139-148. crossref(new window)

Boston, R. S., Viitanen, P. V. and Vierling, E. 1996. Molecular chaperones and protein folding in plants. Plant Mol. Biol. 32:191-222. crossref(new window)

Boter, M., Amigues, B., Peart, J., Breuer, C., Kadota, Y., Casais, C., Moore, G., Kleanthous, C., Ochsenbein, F., Shirasu, K. and Guerois, R. 2007. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19:3791-3804. crossref(new window)

Breiman, A. 2014. Plant Hsp90 and its co-chaperones. Curr. Protein Pept. Sci. 15:232-244. crossref(new window)

Cai, B., Tomida, A., Mikami, K., Nagata, K. and Tsuruo, T. 1998. Down-regulation of epidermal growth factor receptor-signaling pathway by binding of GRP78/BiP to the receptor under glucose-starved stress conditions. J. Cell. Physiol. 177:282-288. crossref(new window)

Carvalho, H. H., Silva, P. A., Mendes, G. C., Brustolini, O. J., Pimenta, M. R., Gouveia, B. C., Valente, M. A., Ramos, H. J., Soares-Ramos, J. R. and Fontes, E. P. 2014. The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. Plant Physiol. 164:654-670. crossref(new window)

Catlett, M. G. and Kaplan, K. B. 2006. Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J. Biol. Chem. 281:33739-33748. crossref(new window)

Chen, L., Hamada, S., Fujiwara, M., Zhu, T., Thao, N. P., Wong, H. L., Krishna, P., Ueda, T., Kaku, H., Shibuya, N., Kawasaki, T. and Shimamoto, K. 2010. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7:185-196. crossref(new window)

Chen, W., Syldath, U., Bellmann, K., Burkart, V. and Kolb, H. 1999. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J. Immunol. 162:3212-3219.

Chen, Z., Zhou, T., Wu, X., Hong, Y., Fan, Z. and Li, H. 2008. Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana. Mol. Plant Pathol. 9:809-817. crossref(new window)

Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814. crossref(new window)

Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539-548.

Eichmann, R. and Schafer, P. 2012. The endoplasmic reticulum in plant immunity and cell death. Front. Plant Sci. 3:200.

Fleck, M. W. 2006. Glutamate receptors and endoplasmic reticulum quality control: looking beneath the surface. Neuroscientist 12:232-244. crossref(new window)

Fukuda, S., Sumii, M., Masuda, Y., Takahashi, M., Koike, N., Teishima, J., Yasumoto, H., Itamoto, T., Asahara, T., Dohi, K. and Kamiya, K. 2001. Murine and human SDF2L1 is an endoplasmic reticulum stress-inducible gene and encodes a new member of the Pmt/rt protein family. Biochem. Biophys. Res. Commun. 280:407-414. crossref(new window)

Gorovits, R., Moshe, A., Ghanim, M. and Czosnek, H. 2013. Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One 8:e70280. crossref(new window)

Guo, B. and Li, Z. 2014. Endoplasmic reticulum stress in hepatic steatosis and inflammatory bowel diseases. Front. Genet. 5:242.

Guo, F. and Snapp, E. L. 2013. ERdj3 regulates BiP occupancy in living cells. J. Cell Sci. 126:1429-1439. crossref(new window)

Gupta, D. and Tuteja, N. 2011. Chaperones and foldases in endoplasmic reticulum stress signaling in plants. Plant Signal Behav. 6:232-236. crossref(new window)

Gupta, S. C., Sharma, A., Mishra, M., Mishra, R. K. and Chowdhuri, D. K. 2010. Heat shock proteins in toxicology: how close and how far? Life Sci. 86:377-384. crossref(new window)

Hafren, A., Hofius, D., Ronnholm, G., Sonnewald, U. and Makinen, K. 2010. HSP70 and its cochaperone CPIP promote potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions. Plant cell 22:523-535. crossref(new window)

Haweker, H., Rips, S., Koiwa, H., Salomon, S., Saijo, Y., Chinchilla, D., Robatzek, S. and von Schaewen, A. 2010. Pattern recognition receptors require N-glycosylation to mediate plant immunity. J. Biol. Chem. 285:4629-4636. crossref(new window)

Hofius, D., Maier, A. T., Dietrich, C., Jungkunz, I., Bornke, F., Maiss, E. and Sonnewald, U. 2007. Capsid protein-mediated recruitment of host DnaJ-like proteins is required for Potato virus Y infection in tobacco plants. J. Virol. 81:11870-11880. crossref(new window)

Hong, S. W. and Vierling, E. 2001. Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J. 27:25-35. crossref(new window)

Hong, Z., Jin, H., Tzfira, T. and Li, J. 2008. Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. Plant Cell 20:3418-3429. crossref(new window)

Hubert, D. A., He, Y., McNulty, B. C., Tornero, P. and Dangl, J. L. 2009. Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proc. Natl. Acad. Sci. USA 106:9556-9563. crossref(new window)

Hubert, D. A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K. and Dangl, J. L. 2003. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 22:5679-5689. crossref(new window)

Huttner, S. and Strasser, R. 2012. Endoplasmic reticulum-associated degradation of glycoproteins in plants. Front. Plant Sci. 3:67.

Jin, H., Yan, Z., Nam, K. H. and Li, J. 2007. Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol. Cell 26:821-830. crossref(new window)

Kadota, Y. and Shirasu, K. 2012. The HSP90 complex of plants. Biochim. Biophys. Acta 1823:689-697. crossref(new window)

Kampinga, H. H. and Craig, E. A. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. 11:579-592. crossref(new window)

Kanzaki, H., Saitoh, H., Ito, A., Fujisawa, S., Kamoun, S., Katou, S., Yoshioka, H. and Terauchi, R. 2003. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol. Plant Pathol. 4:383-391. crossref(new window)

Kawai, T. and Akira, S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11:373-384. crossref(new window)

Kim, H. J., Hwang, N. R. and Lee, K. J. 2007. Heat shock responses for understanding diseases of protein denaturation. Mol. Cells 23:123-131.

Kim, N. H. and Hwang, B. K. 2015. Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity. Plant Physiol. 167:307-322. crossref(new window)

Kleizen, B. and Braakman, I. 2004. Protein folding and quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 16:343-349. crossref(new window)

Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E. and Scharf, K. D. 2007. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10:310-316. crossref(new window)

Lee, A. S. 2001. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26:504-510. crossref(new window)

Li, J., Zhao-Hui, C., Batoux, M., Nekrasov, V., Roux, M., Chinchilla, D., Zipfel, C. and Jones, J. D. 2009. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc. Natl. Acad. Sci. USA 106:15973-15978. crossref(new window)

Li, Z., Menoret, A. and Srivastava, P. 2002. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr. Opin. Immunol. 14:45-51. crossref(new window)

Liberek, K., Lewandowska, A. and Zietkiewicz, S. 2008. Chaperones in control of protein disaggregation. EMBO J. 27:328-335. crossref(new window)

Liebrand, T. W., Smit, P., Abd-El-Haliem, A., de Jonge, R., Cordewener, J. H., America, A. H., Sklenar, J., Jones, A. M., Robatzek, S., Thomma, B. P., Tameling, W. I. and Joosten, M. H. 2012. Endoplasmic reticulum-quality control chaperones facilitate the biogenesis of Cf receptor-like proteins involved in pathogen resistance of tomato. Plant Physiol. 159:1819-1833. crossref(new window)

Lin, M. Y., Chai, K. H., Ko, S. S., Kuang, L. Y., Lur, H. S. and Charng, Y. Y. 2014. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol. 164:2045-2053. crossref(new window)

Lindquist, S. 1986. The heat-shock response. Annu. Rev. Biochem. 55:1151-1191. crossref(new window)

Lindquist, S. and Craig, E. A. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631-677. crossref(new window)

Liu, B. 2014. Heat Shock Protein gp96 as an Immune Chaperone of Inflammation and Cancer. Aust. J. Clin. Immunol. 1:1014.

Liu, B. and Li, Z. 2008. Endoplasmic reticulum HSP90b1 (gp96, grp94) optimizes B-cell function via chaperoning integrin and TLR but not immunoglobulin. Blood 112:1223-1230. crossref(new window)

Liu, E. S. and Lee, A. S. 1991. Common sets of nuclear factors binding to the conserved promoter sequence motif of two coordinately regulated ER protein genes, GRP78 and GRP94. Nucleic Acids Res. 19:5425-5431. crossref(new window)

Liu, J. X. and Howell, S. H. 2010. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22:2930-2942. crossref(new window)

Liu, J. Z. and Whitham, S. A. 2013. Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. Plant J. 74:110-121. crossref(new window)

Liu, Y., Burch-Smith, T., Schiff, M., Feng, S. and Dinesh-Kumar, S. P. 2004. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 279:2101-2108. crossref(new window)

Lu, R., Malcuit, I., Moffett, P., Ruiz, M. T., Peart, J., Wu, A. J., Rathjen, J. P., Bendahmane, A., Day, L. and Baulcombe, D. C. 2003. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22:5690-5699. crossref(new window)

Lu, X., Tintor, N., Mentzel, T., Kombrink, E., Boller, T., Robatzek, S., Schulze-Lefert, P. and Saijo, Y. 2009. Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele. Proc. Natl. Acad. Sci. USA 106:22522-22527. crossref(new window)

Maimbo, M., Ohnishi, K., Hikichi, Y., Yoshioka, H. and Kiba, A. 2007. Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol. 145:1588-1599. crossref(new window)

Matsumiya, T., Imaizumi, T., Yoshida, H., Satoh, K., Topham, M. K. and Stafforini, D. M. 2009. The levels of retinoic acidinducible gene I are regulated by heat shock protein 90-alpha. J. Immunol. 182:2717-2725. crossref(new window)

Meunier, L., Usherwood, Y. K., Chung, K. T. and Hendershot, L. M. 2002. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13:4456-4469. crossref(new window)

Molinari, M. and Helenius, A. 2000. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288:331-333. crossref(new window)

Monaghan, J. and Zipfel, C. 2012. Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15:349-357. crossref(new window)

Moreno, A. A., Mukhtar, M. S., Blanco, F., Boatwright, J. L., Moreno, I., Jordan, M. R., Chen, Y., Brandizzi, F., Dong, X., Orellana, A. and Pajerowska-Mukhtar, K. M. 2012. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS One 7:e31944. crossref(new window)

Nekrasov, V., Li, J., Batoux, M., Roux, M., Chu, Z. H., Lacombe, S., Rougon, A., Bittel, P., Kiss-Papp, M., Chinchilla, D., van Esse, H. P., Jorda, L., Schwessinger, B., Nicaise, V., Thomma, B. P., Molina, A., Jones, J. D. and Zipfel, C. 2009. Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J. 28:3428-3438. crossref(new window)

Nguyen, N., Francoeur, N., Chartrand, V., Klarskov, K., Guillemette, G. and Boulay, G. 2009. Insulin promotes the association of heat shock protein 90 with the inositol 1,4,5-trisphosphate receptor to dampen its $Ca^{2+}$ release activity. Endocrinology 150:2190-2196. crossref(new window)

Ohashi, K., Burkart, V., Flohe, S. and Kolb, H. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164:558-561. crossref(new window)

Ohta, M. and Takaiwa, F. 2014. Emerging features of ER resident J-proteins in plants. Plant Signal Behav. 9:e28194. crossref(new window)

Park, C. J., Bart, R., Chern, M., Canlas, P. E., Bai, W. and Ronald, P. C. 2010. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS One 5(2):e9262. crossref(new window)

Park, C. J., Sharma, R., Lefebvre, B., Canlas, P. E. and Ronald, P. C. 2013. The endoplasmic reticulum-quality control component SDF2 is essential for XA21-mediated immunity in rice. Plant Sci. 210:53-60. crossref(new window)

Park, C. J., Song, M. Y., Kim, C. Y., Jeon, J. S. and Ronald, P. C. 2014. Rice BiP3 regulates immunity mediated by the PRRs XA3 and XA21 but not immunity mediated by the NB-LRR protein, Pi5. Biochem. Biophys. Res. Commun. 448:70-75. crossref(new window)

Qiu, X. B., Shao, Y. M., Miao, S. and Wang, L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol. Life Sci. 63:2560-2570. crossref(new window)

Queitsch, C., Hong, S. W., Vierling, E. and Lindquist, S. 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479-492. crossref(new window)

Queitsch, C., Sangster, T. A. and Lindquist, S. 2002. Hsp90 as a capacitor of phenotypic variation. Nature 417:618-624. crossref(new window)

Ramakrishnan, M., Tugizov, S., Pereira, L. and Lee, A. S. 1995. Conformation-defective herpes simplex virus 1 glycoprotein B activates the promoter of the grp94 gene that codes for the 94-kD stress protein in the endoplasmic reticulum. DNA Cell Biol. 14:373-384. crossref(new window)

Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571-573. crossref(new window)

Rug, M. and Maier, A. G. 2011. The heat shock protein 40 family of the malaria parasite Plasmodium falciparum. IUBMB Life 63:1081-1086. crossref(new window)

Saijo, Y. 2010. ER quality control of immune receptors and regulators in plants. Cell. Microbiol. 12:716-724. crossref(new window)

Saijo, Y., Tintor, N., Lu, X., Rauf, P., Pajerowska-Mukhtar, K., Haweker, H., Dong, X., Robatzek, S. and Schulze-Lefert, P. 2009. Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J. 28:3439-3449. crossref(new window)

Sangster, T. A., Bahrami, A., Wilczek, A., Watanabe, E., Schellenberg, K., McLellan, C., Kelley, A., Kong, S. W., Queitsch, C. and Lindquist, S. 2007. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLoS One 2:e648. crossref(new window)

Sangster, T. A. and Queitsch, C. 2005. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr. Opin. Plant Biol. 8:86-92. crossref(new window)

Schott, A., Ravaud, S., Keller, S., Radzimanowski, J., Viotti, C., Hillmer, S., Sinning, I. and Strahl, S. 2010. Arabidopsis stromal-derived Factor2 (SDF2) is a crucial target of the unfolded protein response in the endoplasmic reticulum. J. Biol. Chem. 285:18113-18121. crossref(new window)

Seo, Y. S., Lee, S. K., Song, M. Y., Suh, J. P., Hahn, T. R., Ronald, P. and Jeon, J. S. 2008. The HSP90-SGT1-RAR1 molecular chaperone complex: A core modulator in plant immunity. J. Plant Biol. 51:1-10. crossref(new window)

Shafikova, T. N., Omelichkina, Y. V., Soldatenko, A. S., Enikeev, A. G., Kopytina, T. V., Rusaleva, T. M. and Volkova, O. D. 2013. Tobacco cell cultures transformed by the hsp101 gene exhibit an increased resistance to Clavibacter michiganensis ssp. sepedonicus. Doklady Biol. Sci. 450:165-167. crossref(new window)

Shen, Y. and Hendershot, L. M. 2005. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates. Mol. Biol. Cell 16:40-50. crossref(new window)

Shirasu, K. 2009. The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu. Rev. Plant Biol. 60:139-164. crossref(new window)

Shirasu, K. and Schulze-Lefert, P. 2003. Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci. 8:252-258. crossref(new window)

Shiu, R. P., Pouyssegur, J. and Pastan, I. 1977. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA 74:3840-3844. crossref(new window)

Simons, G., Groenendijk, J., Wijbrandi, J., Reijans, M., Groenen, J., Diergaarde, P., Van der Lee, T., Bleeker, M., Onstenk, J., de Both, M., Haring, M., Mes, J., Cornelissen, B., Zabeau, M. and Vos, P. 1998. Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055-1068. crossref(new window)

Sitia, R. and Braakman, I. 2003. Quality control in the endoplasmic reticulum protein factory. Nature 426:891-894. crossref(new window)

Soellick, T., Uhrig, J. F., Bucher, G. L., Kellmann, J. W. and Schreier, P. H. 2000. The movement protein NSm of Tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc. Natl. Acad. Sci. USA 97:2373-2378. crossref(new window)

Takahashi, A., Casais, C., Ichimura, K. and Shirasu, K. 2003. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:11777-11782. crossref(new window)

Te, J., Jia, L., Rogers, J., Miller, A. and Hartson, S. D. 2007. Novel subunits of the mammalian Hsp90 signal transduction chaperone. J. Proteome Res. 6:1963-1973. crossref(new window)

Tsan, M. F. and Gao, B. 2009. Heat shock proteins and immune system. J. Leukoc. Biol. 85:905-910. crossref(new window)

Vabulas, R. M., Ahmad-Nejad, P., da Costa, C., Miethke, T., Kirschning, C. J., Hacker, H. and Wagner, H. 2001. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276:31332-31339. crossref(new window)

van Eden, W., Spiering, R., Broere, F. and van der Zee, R. 2012. A case of mistaken identity: HSPs are no DAMPs but DAMPERs. Cell Stress and Chaperones 17:281-292. crossref(new window)

van Montfort, R. L., Basha, E., Friedrich, K. L., Slingsby, C. and Vierling, E. 2001. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8:1025-1030. crossref(new window)

Van Ooijen, G., Lukasik, E., Van Den Burg, H. A., Vossen, J. H., Cornelissen, B. J. and Takken, F. L. 2010. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2. Plant J. 63:563-572. crossref(new window)

Vandenberghe, W., Nicoll, R. A. and Bredt, D. S. 2005. Interaction with the unfolded protein response reveals a role for stargazin in biosynthetic AMPA receptor transport. J. Neurosci. 25:1095-1102. crossref(new window)

Verchot, J. 2012. Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. Front. Plant Sci. 3:275.