Advanced SearchSearch Tips
Physical Changes in Satsuma Mandarin Leaf after Infection of Elsinoë fawcettii Causing Citrus Scab Disease
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Plant Pathology Journal
  • Volume 31, Issue 4,  2015, pp.421-427
  • Publisher : Korean Society of Plant Pathology
  • DOI : 10.5423/PPJ.NT.05.2015.0086
 Title & Authors
Physical Changes in Satsuma Mandarin Leaf after Infection of Elsinoë fawcettii Causing Citrus Scab Disease
Paudyal, Dilli Prasad; Hyun, Jae-Wook;
  PDF(new window)
Citrus scab disease is one of the destructive diseases that reduce the value of fruit for the fresh market. We analyzed the process of symptom development after infection with scab pathogen fawcettii in the susceptible satsuma mandarin leaves to observe the structural modification against pathogen. The cuticle and epidermal cells along with 3-5 layers of mesophyll tissue were degraded 1-2 days post inoculation. Surrounding peripheral cells of degraded tissues grew rapidly and then enveloped the necrotic area along with the growing conidia. Cross sections through the lesion revealed hyphal colonization in epidermis and mesophyll tissues. In response to the pathogen colonization, host cell walls were lignified, inner cells were rapidly compartmentalized and a semi-circular boundary was formed that separated the infected region from the non-infected region, and finally prevented the intercellular pathogen spread.
citrus scab pathogen;infection process;structural defense;symptom development;time course infection;
 Cited by
Digital Infrared Thermal Imaging of Crape Myrtle Leaves Infested with Sooty Mold,;;;;;

The Plant Pathology Journal, 2016. vol.32. 6, pp.563-569 crossref(new window)
Electron microscopic observations of sooty moulds on crape myrtle leaves, Forest Pathology, 2017, e12380  crossref(new windwow)
Infection and symptom development by citrus scab pathogen Elsinoë fawcettii on leaves of satsuma mandarin, European Journal of Plant Pathology, 2017, 148, 4, 807  crossref(new windwow)
Achor, D. S., Albrigo, L. G. and McCoy, C. W. 1991. Developmental anatomy of lesions on 'Sunburst mandarin leaves initiated by citrus rust mite feeding. J. Am. Soc. Hort. Sci. 116:663-668.

Agrios, G. N. 2005. Plant Pathology. ELSEVIER academic press, New York.

Bellincampi, D., Cervone, F. and Lionetti, V. 2014. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front. Plant Sci. 5:228.

Bhuiyan, N. H., Selvaraj, G., Wei, Y. and King, J. 2009. Role of lignification in plant defense. Plant Signal. Behav. 4:158-159. crossref(new window)

Chung, K. R. 2011. Elsinoe fawcettii and Elsinoe australis: the fungal pathogen causing citrus scab. Mol. Plant Pathol. 12:123-135. crossref(new window)

Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integraded view of plant-pathogen interactions. Nat. Rev. Genet. 11:529-548.

Gabel, A. W. and Tiffany, L. H. 1987. Host-parasite relations and development of Elsinoe panici. Mycologia 79:737-744. crossref(new window)

Hyun, J. W., Paudyal, D. P., Hwang, R. Y. and Kim, K. S. 2014. Improved method to increase the conidia production from citrus scab pathogen (Elsinoe spp.). Res. Plant Dis. 21:231-234.

Hyun, J. W., Timmer, L. W., Lee, S. C., Yun, S. H., Ko, S. W. and Kim, K. S. 2001. Pathological characterization and molecular analysis of Elsinoe isolates causing scab disease of citrus in Jeju Island in Korea. Plant Dis. 85:1013-1017. crossref(new window)

Hyun, J. W., Yi, S. H., MacKenzie, S. J., Timmer, L. W., Kim, K. S., Kang, S. K., Kwon, H. M. and Lim, H. C. 2009. Pathotypes and genetic relationship of worldwide collections of Elsinoe spp. causing scab disease of citrus. Phytopathology 99:721-728. crossref(new window)

Kim, K. W., Hyun, J. W. and Park, E. W. 2004. Cytology of cork layer formation of citrus and limited growth of Elsinoe fawcettii in scab lesions. Eur. J. Plant Pathol. 110:129-138. crossref(new window)

Kolattukudy, P. E. 1984. Biochemistry and function of cutin and suberin. Can. J. Bot. 62:2918-2933. crossref(new window)

Kubicek, C. P., Starr, T. L. and Glass, N. L. 2014. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 52:427-451. crossref(new window)

Lodha, T. D., Hembram, P., Tep, N. and Basak, J. 2013. Proteomics: a successful approach to understand the molecular mechanism of plant-pathogen interaction. Am. J. Plant Sci. 4: 1212-1226. crossref(new window)

Simard, M., Rioux, D. and Laflamme, G. 2001. Formation of lingo-suberized tissues in jack pine resistant to the European race of Gremmeniella abietina. Phytopathology 91:1128-1140. crossref(new window)

Timmer, L. W. 2000. Scab Diseases. In: Compendium of citrus diseases. ed. by G.S. Timmer, L.W., Graham, J.H., pp. 31-32. The American Phytophathological Society, APS Press.

Vance, C. P., Kirk, T. K. and Sherwood, R. T. 1980. Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol. 18:259-288. crossref(new window)

Vargas, W. A., Martin, J. M. S., Rech, G. E., Rivera, L. P., Benito, E. P., Diaz-Minguez, J. M., Thon, M. R. and Sukno, S. A. 2012. Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in Maize. Plant Physiol. 158:1342-1358. crossref(new window)