Advanced SearchSearch Tips
Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Plant Pathology Journal
  • Volume 32, Issue 1,  2016, pp.25-32
  • Publisher : Korean Society of Plant Pathology
  • DOI : 10.5423/PPJ.OA.05.2015.0076
 Title & Authors
Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10
Park, Sangryeol; Gupta, Ravi; Krishna, R.; Kim, Sun Tae; Lee, Dong Yeol; Hwang, Duk-ju; Bae, Shin-Chul; Ahn, Il-Pyung;
  PDF(new window)
Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato.
genomics;MALDI-TOF-MS;potato;proteomics;Ralstonia solanacearum;
 Cited by
Ali, A., Alexandersson, E., Sandin, M., Resjo, S., Lenman, M., Hedley, P. and Andreasson, E. 2014. Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genomics 15:497-514. crossref(new window)

Carpenter, C. D., Kreps, J. A. and Simon, A. E. 1994. Genes encoding glycine-rich Arabidopsis thaliana proteins with RNAbinding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104:1015-1025. crossref(new window)

Champoiseau, P. G., Jones, J. B. and Allen, C. 2009. Ralstonia solanacearum race 3 biovar 2 causes tropical losses and temperate anxieties. Plant Health Prog. 10:1-10.

Chiang, C. С. and Hadwiger, L. A. 1990. Cloning and characterization of a disease resistance response gene in pea inducible by Fusarium solani. Mol. Plant-Microbe Interact. 3:78-85. crossref(new window)

Constabel, C. P. and Brisson, N. 1992. The defense-related STH- 2 gene product of potato shows race-specific accumulation after inoculation with low concentrations of Phytophthora infestans zoospores. Planta 188:289-295.

D'Ippolito, S, Terrile, M. C., Godoy, A. V., Casalongue, C. A. and Fiol, D. F. 2011. Identification and Expression of Stressresponsive Genes to Fusarium solani f. sp. eumartii Infection in Potato Tubers: Old and New Candidates. In: Benkeblia N (Ed) Potato V. Food 5:23-26.

Deslandes, L., Pileur, F., Liaubet, L., Camut, S., Can, C., Williams, K. and Marco, Y. 1998. Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. Mol. Plant-Microbe Interact. 11:659-667. crossref(new window)

El-Komy, M. H., Abou-Taleb, E. M., Aboshosha, S. M. and El- Sherif, E. M. 2010. Differential expression of potato pathogenesis- related proteins upon infection with late blight pathogen: a case study expression of potato osmotin-like protein. Int. J. Agric. Biol. 12:179-186.

Elphinstone, J. G. 2005. In: The current bacterial wilt situation: a global overview, eds. by Allen, C., Prior, P., Hayward, A.C., Bacterial wilt disease and the Ralstonia solanacearum species complex. Am. Phytopathol. Soc. 9-28.

Elphinstone, J. G., Hennessey, J., Wilson, J. K. and Stead, D. E. 1996. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bulletin 26:663-678. crossref(new window)

Fu, Z. Q., Guo, M., Jeong, B. R., Tian, F., Elthon, T. E., Cerny, R. L. and Alfano, J. R. 2007. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284-288. crossref(new window)

Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdomenech, P. and Pages, M. 1988. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334:262-264. crossref(new window)

Griffin, T. J., Gygi, S. P., Ideker, T., Rist, B., Eng, J., Hood, L. and Aebersold, R. 2002. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell Proteomics 1:323-333. crossref(new window)

Gry, M., Rimini, R., Stromberg, S., Asplund, A., Ponten, F., Uhlen, M. and Nilsson, P. 2009. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10:365-378. crossref(new window)

Guevara, M. G., Verissimo, P., Pires, E., Faro, C. and Daleo, G. R. 2004. Potato aspartic proteases: induction, antimicrobial activity and substrate specificity. J. Plant Pathol. 86:233-238.

Hayward, A. C. 1991. Biology and epidemiology of bacterial wil caused by Pseudomonas solanacernum. Annu. Rev. Phytopathol. 29:65-87. crossref(new window)

Iturriaga, E. A., Leech, M. J., Barratt, D. P. and Wang, T. L. 1994. Two ABA-responsive proteins from pea (Pisum sativum L.) are closely related to intracellular pathogenesis-related proteins. Plant Mol. Biol. 24:235-240. crossref(new window)

Kim, S. G., Wang, Y., Lee, K. H., Park, Z. Y., Park, J., Wu, J. and Kang, K. Y. 2013. In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J. Proteomics 78:58-71. crossref(new window)

Kim, S. T., Cho, K. S., Jang, Y. S. and Kang, K. Y. 2001. Twodimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis 22:2103-2109. crossref(new window)

Kim-Lee, H., Moon, J. S., Hong, Y. J., Kim, M. S. and Cho, H. M. 2005. Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Am. J. Potato Res. 82:129-137. crossref(new window)

Kolomiets, M. V., Chen, H., Gladon, R. J., Braun, E. J. and Hannapel, D. J. 2000. A leaf lipoxygenase of potato induced specifically by pathogen infection. Plant Physiol. 124:1121- 1130. crossref(new window)

Laferriere, L. T., Helgeson, J. P. and Allen, C. 1999. Fertile Solanum tuberosum + S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia sotanacearum. Theor. Appl. Genet. 98:1272-1278. crossref(new window)

Laluk, K., AbuQamar, S. and Mengiste, T. 2011. The Arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiol. 156:2053-2068. crossref(new window)

Moiseyev, G. P., Beintema, J. J., Fedoreyeva, L. I. and Yakovlev, G. I. 1994. High sequence similarity between a ribonuclease from ginsgeng calluses and fungus-elicited proteins from parsley indicates that intraeellular pathogenesis-related proteins are ribonucleases. Planta 193:470-472.

Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15:473-497. crossref(new window)

Peterhansel, C., Freialdenhoven, A., Kurth, J., Kolsch, R. and Schulze-Lefert, P. 1997. Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. Plant Cell 9:1397-1409. crossref(new window)

Schmitz-Linneweber, C. and Small, I. 2008. Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci. 13:663-670. crossref(new window)

Siddappa, S., Tiwari, J. K., Sindhu, R., Sharma, S., Bhardwaj, V., Chakrabarti, S. K. and Singh, B. P. 2014. Phytophthora infestans associated global gene expression profile in a late blight resistant Indian potato cv. Kufri Girdhari. Aus. J. Crop Sci. 8:215-222.

Somssich, I. E., Schmelzer, E., Kawalleck, P. and Hahlbrock, K. 1988. Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Mol. Gen. Genet. 213:93-98. crossref(new window)

Sturm, A. 1992. A wound-inducible glycine-rich protein from Daucus carota with homology to single-stranded nucleic acid-binding proteins. Plant Physiol. 99:1689-1692. crossref(new window)

Tan, J., Tan, Z., Wu, F., Sheng, P., Heng, Y., Wang, X. and Wan, J. 2014. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Mol. Plant 7:1329-1349. crossref(new window)

Taoutaou, A., Socaciu, C., Pamfil, D., Balazs, E., Botez, C., Chis, A. and Matei, H. 2011. Protein Expression in Some Susceptible Potato Late Blight Genotypes. Bulletin UASVM Agriculture 68:363-367.

Velez-Bermudez, I. C. and Schmidt, W. 2014. The conundrum of discordant protein and mRNA expression. Are plants special? Front. Plant Sci. 5:619.

Vidya, C. S., Manoharan, M. and Sita, G. L. 1999. Cloning and characterization of salicylic acid-induced intracellular pathogenesis- related gene from tomato (Lycopersicon esculentum) J. Biosci. 24:287-293. crossref(new window)

Walter, M. H., Liu, J. W., Grand, C., Lamb, C. J. and Hess, D. 1990. Bean pathogenesis-related (PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens. Mol. Gen. Genet. 222:353-360. crossref(new window)

Wenneker, M., Verdel, M. S. W., Groeneveld, R. M. W., Kempenaar, C., Van Beuningen, A. R. and Janse, J. D. 1999. Ralstonia (Pseudomonas) solanacearum race 3 (biovar 2) in surface water and natural weed hosts: first report on stinging nettle (Urtica dioica). Eur. J. Plant Pathol. 105:307-315. crossref(new window)