JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Plant Pathology Journal
  • Volume 32, Issue 2,  2016, pp.112-122
  • Publisher : Korean Society of Plant Pathology
  • DOI : 10.5423/PPJ.OA.04.2015.0063
 Title & Authors
Optimization of a Virus-Induced Gene Silencing System with Soybean yellow common mosaic virus for Gene Function Studies in Soybeans
Kim, Kil Hyun; Lim, Seungmo; Kang, Yang Jae; Yoon, Min Young; Nam, Moon; Jun, Tae Hwan; Seo, Min-Jung; Baek, Seong-Bum; Lee, Jeom-Ho; Moon, Jung-Kyung; Lee, Suk-Ha; Lee, Su-Heon; Lim, Hyoun-Sub; Moon, Jae Sun; Park, Chang-Hwan;
  PDF(new window)
 Abstract
Virus-induced gene silencing (VIGS) is an effective tool for the study of soybean gene function. Successful VIGS depends on the interaction between virus spread and plant growth, which can be influenced by environmental conditions. Recently, we developed a new VIGS system derived from the Soybean yellow common mosaic virus (SYCMV). Here, we investigated several environmental and developmental factors to improve the efficiency of a SYCMV-based VIGS system to optimize the functional analysis of the soybean. Following SYCMV: Glycine max-phytoene desaturase (GmPDS) infiltration, we investigated the effect of photoperiod, inoculation time, concentration of Agrobacterium inoculm, and growth temperature on VIGS efficiency. In addition, the relative expression of GmPDS between non-silenced and silenced plants was measured by qRT-PCR. We found that gene silencing efficiency was highest at a photoperiod of 16/8 h (light/dark) at a growth temperature of approximately following syringe infiltration to unrolled unifoliolate leaves in cotyledon stage with a final SYCMV:GmPDS optimal density of 2.0. Using this optimized protocol, we achieved high efficiency of GmPDS-silencing in various soybean germplasms including cultivated and wild soybeans. We also confirmed that VIGS occurred in the entire plant, including the root, stem, leaves, and flowers, and could transmit GmPDS to other soybean germplasms via mechanical inoculation. This optimized protocol using a SYCMV-based VIGS system in the soybean should provide a fast and effective method to elucidate gene functions and for use in large-scale screening experiments.
 Keywords
GmPDS;optimal condition;soybean;SYCMV;VIGS;
 Language
English
 Cited by
1.
Root-mediated signal transmission of systemic acquired resistance against above-ground and below-ground pathogens, Annals of Botany, 2016, 118, 4, 821  crossref(new windwow)
 References
1.
Anai, T. 2012. Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean. Breeding Sci. 61:462-467. crossref(new window)

2.
Bandillo, N., Jarquin, D., Song, Q., Nelson, R., Cregan, P., Specht, J. and Lorenz, A. 2015. A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome 8:1-13.

3.
Burch-Smith, T. M., Schiff, M., Liu, Y. and Dinesh-Kumar, S. P. 2006. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 142:21-27. crossref(new window)

4.
Burch-Smith, T. M., Anderson, J. C., Martin, G. B. and Dinesh- Kumar, S. P. 2004. Applications and advantages of virusinduced gene silencing for gene function studies in plants. Plant J. 39:734-746. crossref(new window)

5.
Bruun-Rasmussen, M., Madsen, C. T., Jessing, S. and Albrechtsen, M. 2007. Stability of Barley stripe mosaic virus-induced gene silencing in barley. Mol. Plant-Microbe Interact. 20: 1323-1331. crossref(new window)

6.
Chiuoaru, M., Gheorghita, H. and Manafu, D. 2012. Preliminary research concerning the identification of reistance genotypes on Cucurbitaceae family in artificial infection conditions with cmv (Cucumber mosaic virus). Scientific Papers. Series B. Horticulture.

7.
Cook, D. E., Lee, T. G., Guo, X., Melito, S., Wang, K., Bayless, A. M., Wang, J., Hughes, T. J., Willis, D. K. and Clemente, T. E. 2012. Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206-1209. crossref(new window)

8.
Graham, P. H. and Vance, C. P. 2003. Legumes: importance and constraints to greater use. Plant Physiol. 131:872-877. crossref(new window)

9.
Hwang, E. Y., Song, Q., Jia, G., Specht, J. E., Hyten, D. L., Costa, J. and Cregan, P. B. 2014. A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15:1. crossref(new window)

10.
Kandoth, P. K., Heinz, R., Yeckel, G., Gross, N. W., Juvale, P. S., Hill, J., Whitham, S. A., Baum, T. J. and Mitchum, M. G. 2013. A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max. BMC Res. Notes 6:255. crossref(new window)

11.
Kang, Y. J., Kim, K. H., Shim, S., Yoon, M. Y., Sun, S., Kim, M. Y., Van, K. and Lee, S.-H. 2012. Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol. 12:139. crossref(new window)

12.
Kawai, T., Gonoi, A., Nitta, M., Kaido, M., Yamagishi, N., Yoshikawa, N. and Tao, R. 2014. Virus-induced gene silencing in apricot (Prunus armeniaca L.) and Japanese apricot (P. mume Siebold & Zucc.) with the Apple latent spherical virus vector system. J. Jpn Soc Hort Sci. 83:23-31. crossref(new window)

13.
Kim, K. H., Kang, Y. J., Kim, D. H., Yoon, M. Y., Moon, J. K., Kim, M. Y., Van, K. and Lee, S. H. 2011. RNA-Seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and-susceptible alleles. DNA Res. 18:483-497. crossref(new window)

14.
Kim, K. H., Kim, M. Y., Van, K., Moon, J.-K., Kim, D. H. and Lee, S.-H. 2008. Marker-assisted foreground and background selection of near isogenic lines for bacterial leaf pustule resistant gene in soybean. J. Crop Sci. Biotechnol. 11:263-268.

15.
Kim, K. H., Lee, S., Seo, M.-J., Lee, G.-A., Ma, K.-H., Jeong, S.-C., Lee, S.-H., Park, E. H., Kwon, Y.-U. and Moon, J.-K. 2014. Genetic diversity and population structure of wild soybean (Glycine soja Sieb. and Zucc.) accessions in Korea. Plant Genet. Res. 12:S45-S48. crossref(new window)

16.
Kim, M. Y., Lee, S., Van, K., Kim, T.-H., Jeong, S.-C., Choi, I.-Y., Kim, D.-S., Lee, Y.-S., Park, D., Ma, J., Kim, W.-Y., Kim, B.-C., Park, S., Lee, K.-A., Kim, D. H., Kim, K. H., Shin, J. H., Jang, Y. E., Kim, K. D., Liu, W. X., Chaisan, T., Kang, Y. J., Lee, Y.-H., Kim, K.-H., Moon, J.-K., Schmutz, J., Jackson, S. A., Bhak, J. and Lee, S.-H. 2010. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc. Natl. Acad. Sci. USA 107:22032-22037. crossref(new window)

17.
Lam, H.-M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F. L., Li, M.-W., He, W., Qin, N., Wang, B., Li, Jun., Jian, M., Wang, J., Shao, G., Wang, Jun., Sun, S. S.-M. and Zhang, G. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genentic diversity and selection. Nature Genet. 42:1053-1059. crossref(new window)

18.
Lim, S., Nam, M., Kim, K. H., Lee, S.-H., Moon, J.-K., Lim, H.-S., Choung, M.-G., Kim, S.-M. and Moon, J. S. 2015. Development of a new vector using soybean yellow common mosaic virus for gene function study or heterologous protein expression in soybeans. J. Virol. Methods doi: 10.1016/j.jviromet.2015.11.005. crossref(new window)

19.
Lu, R., Martin-Hernandez, A. M., Peart, J. R., Malcuit, I. and Baulcombe, D. C. 2003. Virus-induced gene silencing in plants. Methods 30:296-303. crossref(new window)

20.
Mano, H., Fujii, T., Sumikawa, N., Hiwatashi, Y. and Hasebe, M. 2014. Development of an Agrobacterium-Mediated Stable Transformation Method for the Sensitive Plant Mimosa pudica. PloS ONE 9:e88611. crossref(new window)

21.
Meyer, J. D., Silva, D. C., Yang, C., Pedley, K. F., Zhang, C., van de Mortel, M., Hill, J. H., Shoemaker, R. C., Abdelnoor, R. V. and Whitham, S. A. 2009. Identification and analyses of candidate genes for Rpp4-mediated resistance to Asian soybean rust in soybean. Plant Physiol. 150:295-307. crossref(new window)

22.
Nagamatsu, A., Masuta, C., Senda, M., Matsuura, H., Kasai, A., Hong, J. S., Kitamura, K., Abe, J. and Kanazawa, A. 2007. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnol. J. 5:778-790. crossref(new window)

23.
Nam, M., Kim, J.-S., Park, S.-J., Park, C. Y., Lee, J.-S., Choi, H.-S., Kim, J.-S., Kim, H. G., Lim, S. and Moon, J. S. 2012. Biological and molecular characterization of Soybean yellow common mosaic virus, a new species in the genus Sobemovirus. Virus Res. 163:363-367. crossref(new window)

24.
Pandey, A. K., Yang, C., Zhang, C., Graham, M. A., Horstman, H. D., Lee, Y., Zabotina, O. A., Hill, J. H., Pedley, K. F. and Whitham, S. A. 2011. Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2. Mol. Plant-Microbe Interact. 24:194-206. crossref(new window)

25.
Panja, S., Aich, P. B. and Basu, T. 2008. How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli? Mol. Membr. Biol. 25:411-422. crossref(new window)

26.
Pang, J., Zhu, Y., Li, Q., Liu, J., Tian, Y., Liu, Y. and Wu, J. 2013. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense. PloS ONE 8:e73211. crossref(new window)

27.
Robertson, D. 2004. VIGS vectors for gene silencing: many targets, many tools. Annu. Rev. Plant Biol. 55:495-519. crossref(new window)

28.
Schmittgen, T. D. and Livak, K. J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3: 1101-1108. crossref(new window)

29.
Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H. T., Wing, R. A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R. C. and Jackson, S. A. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178-183. crossref(new window)

30.
Senthil-Kumar, M. and Mysore, K. S. 2011. New dimensions for VIGS in plant functional genomics. Trends Plant Sci. 16: 656-665. crossref(new window)

31.
Seo, H. S., Li, J., Lee, S., Yu, J., Kim, K., Lee, S., Lee, I. and Paek, N. 2007. The hypernodulating nts mutation induces jasmonate synthetic pathway in soybean leaves. Mol. Cells 24:185.

32.
Soto-Arias, J. and Munkvold, G. 2011. Effects of virus infection on susceptibility of soybean plants to Phomopsis longicolla. Plant Dis. 95:530-536. crossref(new window)

33.
Sung, Y. C., Lin, C. P. and Chen, J. C. 2014. Optimization of virus-induced gene silencing in Catharanthus roseus. Plant Pathol. 63:1159-1167. crossref(new window)

34.
Unver, T. and Budak, H. 2009. Virus-induced gene silencing, a post transcriptional gene silencing method. Int. J. Plant Genomics 198680.

35.
Wang, C., Cai, X., Wang, X. and Zheng, Z. 2006. Optimisation of tobacco rattle virus-induced gene silencing in Arabidopsis. Func. Plant Biol. 33:347-355. crossref(new window)

36.
Wang, J., Li, D., Gong, Z. and Zhang, Y. 2013. Optimization of virus-induced gene silencing in pepper (Capsicum annuum L.). Genet. Mol. Res. 12:2492-2506. crossref(new window)

37.
Yamada, T., Takagi, K. and Ishimoto, M. 2012. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis. Breeding Sci. 61:480. crossref(new window)

38.
Yamagishi, N. and Yoshikawa, N. 2009. Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with Apple latent spherical virus vectors. Plant Mol. Biol. 71:15-24. crossref(new window)

39.
Zhang, C., Bradshaw, J. D., Whitham, S. A. and Hill, J. H. 2010. The development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiol. 153:52-65. crossref(new window)

40.
Zhang, C. and Ghabrial, S. A. 2006. Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344:401-411. crossref(new window)