Advanced SearchSearch Tips
Characterization of Nivalenol-Producing Fusarium culmorum Isolates Obtained from the Air at a Rice Paddy Field in Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Plant Pathology Journal
  • Volume 32, Issue 3,  2016, pp.182-189
  • Publisher : Korean Society of Plant Pathology
  • DOI : 10.5423/PPJ.OA.12.2015.0268
 Title & Authors
Characterization of Nivalenol-Producing Fusarium culmorum Isolates Obtained from the Air at a Rice Paddy Field in Korea
Kim, Da-Woon; Kim, Gi-Yong; Kim, Hee-Kyoung; Kim, Jueun; Jeon, Sun Jeong; Lee, Chul Won; Lee, Hyang Burm; Yun, Sung-Hwan;
  PDF(new window)
Together with the Fusarium graminearum species complex, F. culmorum is a major member of the causal agents of Fusarium head blight on cereals such as wheat, barley and corn. It causes significant yield and quality losses and results in the contamination of grain with mycotoxins that are harmful to humans and animals. In Korea, F. culmorum is listed as a quarantine fungal species since it has yet to be found in the country. In this paper, we report that two isolates (J1 and J2) of F. culmorum were collected from the air at a rice paddy field in Korea. Species identification was confirmed by phylogenetic analysis using multilocus sequence data derived from five genes encoding translation elongation factor, histone H3, phosphate permease, a reductase, and an ammonia ligase and by morphological comparison with reference strains. Both diagnostic PCR and chemical analysis confirmed that these F. culmorum isolates had the capacity to produce nivalenol, the trichothecene mycotoxin, in rice substrate. In addition, both isolates were pathogenic on wheat heads and corn stalks. This is the first report on the occurrence of F. culmorum in Korea.
Fusarium culmorum;Fusarium head blight;nivalenol production;rice paddy field air;
 Cited by
Identity and pathogenicity of Fusarium species associated with crown rot on wheat (Triticum spp.) in Turkey, European Journal of Plant Pathology, 2017  crossref(new windwow)
Animal, Plant and Fisheries Quarantine and Inspection Agency. 2013. List of plant quarantine fungi in Korea newly revised in 2013. Res. Plant Dis. 19:237-241.

Bakan, B., Pinson, L., Cahagnier, B., Melcion, D., Sémon, E. and Richard-Molard, D. 2001. Toxigenic potential of Fusarium culmorum strains isolated from French wheat. Food Addit. Contam. 18:998-1003. crossref(new window)

Chandler, E. A., Simpson, D. R., Chandler, E. A., Duncan, R. S., Thomsett, M. A. and Nicholson, P. 2003. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol. Mol. Plant Pathol. 62:355-367. crossref(new window)

Chi, M. H., Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. crossref(new window)

Demeke, T., Clear, R. M., Patrick, S. K. and Gaba, D. 2005. Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agarplate method and trichothecene analysis. Int. J. Food Microbiol. 103:271-284. crossref(new window)

Gang, G., Miedacjner, T., Schuhmacher, U., Schollenberger, M. and Geiger, H. H. 1998. Deoxynivalenol and nivalenol production by Fusarium culmorum isolates differing in aggressiveness toward winter rye. Phytopathology 88:879-884. crossref(new window)

Goswami, R. S. and Kistler, H. C. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5:515-525. crossref(new window)

Han, Y. K., Kim, M. D., Lee, S. H., Yun, S. H. and Lee, Y. W. 2007. A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Mol. Microbiol. 63:768-779.

Hogg, A. C., Johnston, R. H., Johnston, J. A., Klouser, L., Kephart, K. D. and Dyer, A. T. 2010. Monitoring fusarium crown rot populations in spring wheat residues using quantitative real-time polymerase chain reaction. Phytopathology 100:49-57. crossref(new window)

Iwama, T., Katsube, K. and Ishii, H. 2007. Detection of thiophanate-methyl-resistant isolates of Fusarium culmorum, a causal agent of Fusarium head blight on wheat, in Aomori prefecture, northern Japan. Jpn. J. Phytopathol. 73:162-165. crossref(new window)

Jennings, P., Coates, M. E., Walsh, K., Turner, J. A. and Nicholson, P. 2004. Determination of deoxynivalenol- and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathol. 53:643-652. crossref(new window)

Jung, B., Lee, S., Ha, J., Park, J. C., Han, S. S., Hwang, I., Lee, Y. W. and Lee, J. 2013. Development of a selective medium for the fungal pathogen Fusarium graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. Plant Pathol. J. 29:446-450. crossref(new window)

Kerenyi, Z., Moretti, A., Waalwijk, C., Olah, B. and Hornok, L. 2004. Mating type sequences in asexually reproducing Fusarium species. Appl. Environ. Microbiol. 70:4419-4423. crossref(new window)

Kim, H., Kim, H. K., Lee, S. and Yun, S. H. 2015. The white collar complex is involved in sexual development of Fusarium graminearum. PLoS One 10:e0120293. crossref(new window)

Kim, J. C., Park, A. R., Lee, Y. W., Youn, H. J. and Cha, S. H. 1993. Variation in trichothecene and zearalenone production by Fusarium graminearum isolates from corn and barley in Korea. Korean J. Microbiol. 31:312-317.

Lee, J., Chang, I. Y., Kim, H., Yun, S. H., Leslie, J. F. and Lee, Y. W. 2009. Genetic diversity and fitness of Fusarium graminearum populations from rice in Korea. Appl. Environ. Microbiol. 75:3289-3295. crossref(new window)

Lee, T., Oh, D. W., Kim, H. S., Lee, J., Kim, Y. H., Yun, S. H. and Lee, Y. W. 2001. Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl. Environ. Microbiol. 67:2966-2972. crossref(new window)

Leslie, J. F. and Summerell, B. A. 2006. The Fusarium lab manual. Wiley-Blackwell, Ames, IA, USA.

Miedaner, T., Cumagun, C. J. R. and Chakraborty, S. 2008. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. J. Phytopathol. 156:129-139. crossref(new window)

Mishra, P. K., Fox, R. T. V. and Culham, A. 2003. Inter-simple sequence repeat and aggressiveness analyses revealed high genetic diversity, recombination and long-range dispersal in Fusarium culmorum. Ann. Appl. Biol. 143:291-301. crossref(new window)

Muthomi, J. W., Schutze, A., Dehne, H. W., Mutitu, E. W. and Oerke, E. C. 2000. Characterization of Fusarium culmorum isolates by mycotoxin production and aggressiveness to winter wheat. J. Plant Dis. Protect. 107:113-123.

Nielsen, L. K., Jensen, J. D., Rodriguez, A., Jorgensen, L. N. and Justesen, A. F. 2012. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int. J. Food Microbiol. 157:384-392. crossref(new window)

Obanor, F., Erginbas-Orakci, G., Tunali, B., Nicol, J. M. and Chakraborty, S. 2010. Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal Biol. 114:753-765. crossref(new window)

O'Donnell, K., Kistler, H. C., Tacke, B. K. and Casper, H. H. 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc. Natl. Acad. Sci. U. S. A. 97:7905-7910. crossref(new window)

Parry, D. W., Jenkinson, P. and McLeod, L. 1995. Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol. 44:207-238. crossref(new window)

Pasquali, M., Giraud, F., Brochot, C., Cocco, E., Hoffmann, L. and Bohn, T. 2010. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Int. J. Food Microbiol. 137:246-253. crossref(new window)

Scherm, B., Balmas, V., Spanu, F., Pani, G., Delogu, G., Pasquali, M. and Migheli, Q. 2013. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 14:323-341. crossref(new window)

Stepien, L., Popiel, D., Koczyk, G. and CheLkowski, J. 2008. Wheat-infecting Fusarium species in Poland--their chemotypes and frequencies revealed by PCR assay. J. Appl. Genet. 49:433-441. crossref(new window)

Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680. crossref(new window)

Waalwijk, C., Kastelein, P., Vries I., Kerényi, Z., Van der Lee, T., Hesselink, T., Kohl, J. and Kema, G. 2003. Major changes in Fusarium spp. in wheat in the Netherlands. Eur. J. Plant Pathol. 109:743-754. crossref(new window)

Wagacha, J. M. and Muthomi, J. W. 2007. Fusarium culmorum:infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Protect. 26:877-885. crossref(new window)

West, J. S., Holdgate, S., Townsend, J. A., Edwards, S. G., Jennings, P. and Fitt, B. D. L. 2012. Impacts of changing climate and agronomic factors on fusarium ear blight of wheat in the UK. Fungal Ecol. 5:53-61. crossref(new window)

Yli-Mattila, T. 2010. Ecology and evolution of toxigenic Fusarium species in cereals in northern europe and Asia. J. Plant Pathol. 92:7-18.