Finite Control Set Model Predictive Control of AC/DC Matrix Converter for Grid-Connected Battery Energy Storage Application

- Journal title : Journal of Power Electronics
- Volume 15, Issue 4, 2015, pp.1006-1017
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2015.15.4.1006

Title & Authors

Finite Control Set Model Predictive Control of AC/DC Matrix Converter for Grid-Connected Battery Energy Storage Application

Feng, Bo; Lin, Hua;

Feng, Bo; Lin, Hua;

Abstract

This paper presents a finite control set model predictive control (FCS-MPC) strategy for the AC/DC matrix converter used in grid-connected battery energy storage system (BESS). First, to control the grid current properly, the DC current is also included in the cost function because of input and output direct coupling. The DC current reference is generated based on the dynamic relationship of the two currents, so the grid current gains improved transient state performance. Furthermore, the steady state error is reduced by adding a closed-loop. Second, a Luenberger observer is adopted to detect the AC input voltage instead of sensors, so the cost is reduced and the reliability can be enhanced. Third, a switching state pre-selection method that only needs to evaluate half of the active switching states is presented, with the advantages of shorter calculation time, no high dv/dt at the DC terminal, and less switching loss. The robustness under grid voltage distortion and parameter sensibility are discussed as well. Simulation and experimental results confirm the good performance of the proposed scheme for battery charging and discharging control.

Keywords

AC/DC matrix converter;Battery energy storage system;Model predictive control;

Language

English

Cited by

References

1.

Z. Miao, L. Xu, V. R. Disfani, and L. Fan, “An SOC-based battery management system for microgrids,” IEEE Trans. Smart Grid, Vol. 5 , No. 2 , pp. 966-973, Mar. 2014.

2.

S. Inoue and H. Akagi, “A bidirectional DC-DC converter for an energy storage system with galvanic isolation,” IEEE Trans. Power Electron., Vol. 22 , No. 6 , pp. 2299-2306, Nov. 2007.

3.

D. G. Holmes and T. A. Lipo, “Implementation of a controlled rectifier using AC-AC matrix converter theory,” IEEE Trans. Power Electron., Vol. 7 , No. 1 , pp. 240-250, Jan. 1992.

4.

K. You, D. Xiao, M. F. Rahman, and M. N. Uddin, “Applying reduced general direct space vector modulation approach of AC/AC matrix converter theory to achieve direct power factor controlled three-phase AC-DC matrix rectifier,” IEEE Trans. Ind. Appl., Vol. 50 , No. 3 , pp. 2243-2257, May 2014.

5.

A. L. Julian and G. Oriti, “A novel clamp circuit for a regenerative rectifier using AC/AC matrix converter theory,” IEEE Trans. Ind. Appl., Vol. 41 , No. 1 , pp. 68-74, Jan. 2005.

6.

S. Ratanapanachote, J. C. Han, and P. N. Enjeti, “A digitally controlled switch mode power supply based on matrix converter,” IEEE Trans. Power Electron., Vol. 21 , No. 1 , pp. 124-130, Jan. 2006.

7.

R. Metidji, B. Metidji, and B. Mendil, “Design and implementation of a unity power factor fuzzy battery charger using an ultrasparse matrix rectifier,” IEEE Trans. Power Electron., Vol. 28 , No. 5 , pp. 2269-2276, May 2013.

8.

M. Su, H. Wang, Y. Sun, J. Yang, W. Xiong, and Y. Liu, “AC/DC matrix converter with an optimized modulation strategy for V2G applications,” IEEE Trans. Power Electron., Vol. 28 , No. 12 , pp. 5736-5745, Dec. 2013.

9.

P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein, “Matrix converters: a technology review,” IEEE Trans. Ind. Electron., Vol. 49 , No. 2 , pp. 276-288, Apr. 2002.

10.

J. Rodriguez, M. Rivera, J. W. Kolar, and P. W. Wheeler, “A review of control and modulation methods for matrix converters,” IEEE Trans. Ind. Electron., Vol. 59 , No. 1 , pp. 58-70, Jan. 2012.

11.

L. Empringham, J. W. Kolar, J. Rodriguez, P. W. Wheeler, and J. C. Clare, “Technological issues and industrial application of matrix converters: a review,” IEEE Trans. Ind. Electron., Vol. 60 , No. 10 , pp. 4260-4271, Oct. 2013.

12.

X. Liu, Q. Zhang, and D. Hou, “One-cycle control strategy with active damping for an AC-DC matrix converter,” Journal of Power Electronics, Vol. 14, No. 4, pp. 778-787, Jul. 2014.

13.

S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model predictive control – A simple and powerful method to control power converters,” IEEE Trans. Ind. Electron., Vol. 56 , No. 6 , pp. 1826-1838, Jun. 2009.

14.

J. Rodriguez, M. P. Kazmierkowski, J. R. Espinoza, P. Zanchetta, H. Abu-Rub, H. A. Young, and C. A. Rojas, “State of the art of finite control set model predictive control in power electronics,” IEEE Trans. Ind. Informat., Vol. 9 , No. 2 , pp. 1003-1016, May 2013.

15.

M. Rivera, J. Rodriguez, P. W. Wheeler, C. A. Rojas, A. Wilson, and J. R. Espinoza, “Control of a matrix converter with imposed sinusoidal source currents,” IEEE Trans. Ind. Electron., Vol. 59 , No. 4 , pp. 1939-1949, Apr. 2012.

16.

M. Rivera, C. Rojas, A. Wilson, J. Rodriguez, J. Espinoza, C. Baier, and J. Munoz, “Review of predictive control methods to improve the input current of an indirect matrix converter,” IET Power Electron., Vol. 7, No. 4, pp. 886-894, Apr. 2014.

17.

P. Zavala, M. Rivera, S. Kouro, J. Rodriguez, B. Wu, V. Yaramasu, C. Baier, J. Munoz, J. Espinoza, and P. Melin, "Predictive control of a current source rectifier with imposed sinusoidal input currents," in Conf. IECON 2013, pp. 5842-5847, 2013.

18.

Z. Zhang, F. Wang, T. Sun, J. Rodriguez, and R. Kennel, “FPGA based experimental investigation of a quasi-centralized DMPC scheme for a back-to-back converter,” IEEE Trans. Power Electron., to be published.

19.

P. Cortes, G. Ortiz, J. I. Yuz, J. Rodriguez, S. Vazquez, and L. G. Franquelo, “Model predictive control of an inverter with output LC filter for UPS applications,” IEEE Trans. Ind. Electron., Vol. 56 , No. 6 , pp. 1875-1883, Jun. 2009.

20.

P. Cortés, A. Wilson, S. Kouro, J. Rodriguez, and H. Abu-Rub, “Model predictive control of multilevel cascaded H-bridge inverters,” IEEE Trans. Ind. Electron., Vol. 57 , No. 8 , pp. 2691-2699, Aug. 2010.

21.

C. Xia, T. Liu, T. Shi, and Z. Song, “A simplified finite-control-set model-predictive control for power converters,” IEEE Trans. Ind. Inform., Vol. 10 , No. 2 , pp. 991-1002, May 2014.

22.

J. Hu, J. Zhu, G. Lei, G. Platt, and D. G. Dorrell, “Multi-objective model-predictive control for high-power converters,” IEEE Trans. Energy Convers., Vol. 28 , No. 3 , pp. 652-663, Sep. 2013.

23.

T. Shi, C. Zhang, Q. Geng, and C. Xia, “Improved model predictive control of three-level voltage source converter,” Electric Power Components and Systems, Vol. 42 , No. 10 , pp. 1029-1038, Jun. 2014.

24.

R. Vargas, J. Rodriguez, C. A. Rojas, and M. Rivera, “Predictive control of an induction machine fed by a matrix converter with increased efficiency and reduced common-mode voltage,” IEEE Trans. Energy Convers., Vol. 29 , No. 2 , pp. 473-485, Jun. 2014.

25.

K. You and M. F. Rahman, “Analytical model of conduction and switching losses of matrix-Z-source converter,” Journal of Power Electronics, Vol. 9 , No. 2 , pp. 275-287, Mar. 2009.