Power Quality Improvement in Autonomous Microgrids Using Multi-functional Voltage Source Inverters: A Comprehensive Review

- Journal title : Journal of Power Electronics
- Volume 15, Issue 4, 2015, pp.1054-1065
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2015.15.4.1054

Title & Authors

Power Quality Improvement in Autonomous Microgrids Using Multi-functional Voltage Source Inverters: A Comprehensive Review

Miveh, Mohammad Reza; Rahmat, Mohd Fadli; Ghadimi, Ali Asghar; Mustafa, Mohd Wazir;

Miveh, Mohammad Reza; Rahmat, Mohd Fadli; Ghadimi, Ali Asghar; Mustafa, Mohd Wazir;

Abstract

Multi-functional voltage source inverters (VSIs) have attracted increasing attention in recent years for their advantageous auxiliary services for power quality enhancement in autonomous microgrids. These types of VSIs can not only achieve a proper control scheme in autonomous mode but also cope with the prescribed power quality and stability requirements. These functionalities are integrated within the same device, thereby significantly improving the cost-effectiveness of microgrids while decreasing the investment and bulk compared with those of multiple devices with independent functionalities. Control strategies for power quality enhancement in autonomous microgrids using multi-functional VSIs are comprehensively reviewed in this paper. In addition, such VSIs are discussed in detail, and comparisons of which are also provided. Lastly, a number of future research directions for multi-functional VSIs are recommended.

Keywords

Autonomous microgrids;Microgrid control;Multi-functional voltage source inverter;Power quality;

Language

English

Cited by

References

1.

N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE Power Energy Mag., Vol. 5, No. 4, pp. 78-94, Jul./Aug. 2007.

2.

B. Lasseter, “Microgrids [distributed power generation],” power Engineering Society Winter Meeting, Vol. 1, pp. 146-149, 2001.

3.

M. R. Miveh, M. F. Rahmat, and M. W. Mustafa, “A new per-phase control scheme for three-phase four-leg grid-connected inverters,” Electronics World, Vol. 120, No. 1939, pp. 30-36, Jul. 2014.

4.

R. Palma-Behnke, C. Benavides, F. Lanas, B. Severino, L. Reyes, J. Llanos, and D. Sáez, “A microgrid energy management system based on the rolling horizon strategy,” IEEE Trans. Smart Grid, Vol. 4, No. 2, pp. 996-1006, Jun. 2013.

5.

M. Savaghebi, M. Hashempour, and J. M. Guerrero, “Hierarchical coordinated control of distributed generators and active power filters to enhance power quality of microgrids,” Power and Electrical Engineering of Riga Technical University (RTUCON), 55th International Scientific Conference, pp. 259-264, 2014.

6.

F. Katiraei, M. R. Iravani, and P. W. Lehn, “Micro-grid autonomous operation during and subsequent to islanding process,” IEEE Trans. Power Delivery, Vol. 20, No. 1, pp. 248-257, Jan. 2005.

7.

C. Wang and M. Nehrir, “Power management of a stand-alone wind/ photovoltaic/fuel cell energy system,” IEEE Trans. Energy Convers., Vol. 23, No. 3, pp. 957-967, Sep. 2008.

8.

Z. Zheng, H. Yang, R. Zhao, and C. Cheng, “Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: A comprehensive review,” Renewable and Sustainable Energy Reviews, Vol. 24, pp. 223-270, Aug. 2013.

9.

Z. Zhixiang, Z. Wang, and M. Cheng, “Modeling, analysis, and design of multifunction grid-interfaced inverters with output LCL filter,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3830-3839, Jul. 2014.

10.

J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, M. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: a survey,” IEEE Trans. Ind. Electron., Vol. 53, No. 4, pp. 1002-1016, Jun. 2006.

11.

O. A. Ahmed and J. A. M. Bleijs, “Power flow control methods for an ultracapacitor bidirectional converter in DC microgrids – a comparative study,” Renewable and Sustainable Energy Review, Vol. 26, pp. 727-738, Oct. 2013.

12.

M. D. Ilić and S. X. Liu, Hierarchical Power Systems Control: Its Value in a Changing Industry (Advances in Industrial Control, Springer, chap. 2, 1996.

13.

M. Ilic-Spong, J. Christensen, and K. L. Eichorn, “Secondary voltage control using pilot point information,” IEEE Trans. Power Syst., Vol. 3, No. 2, pp. 660-668, May 1988.

14.

J. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced control architectures for intelligent microgrids – Part I: Decentralized and hierarchical control,” IEEE Trans. Ind. Electron., Vol. 60, No.4, pp.1254-1262, Apr. 2013.

15.

J. M. Guerrero, J.C. Vasquez, J. Matas, L. G. Vicuña, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids – A general approach toward standardization,” IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 158-172, Jan. 2011.

16.

O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management – Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renewable and Sustainable Energy Reviews, Vol. 36, pp. 428-439, Aug. 2014.

17.

A. Mehrizi-Sani and R. Iravani, “Potential-function based control of a microgrid in islanded and grid-connected models,” IEEE Trans. Power Syst., Vol. 25, No. 4, pp. 1883-1891, Nov. 2010.

18.

Y. A.-R. I. Mohamed and A. A. Radwan, “Hierarchical control system for robust microgrid operation and seamless mode transfer in active distribution systems,” IEEE Trans. Smart Grid, Vol. 2, No. 2, pp. 352-362, Jun. 2011.

19.

D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jimenez-Estevez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans, Smart Grid, Vol .5, No. 4, pp. 1905-1919, Jul. 2014.

20.

A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control system,” IEEE Trans. Smart Grid, Vol. 3, No. 4, pp. 1963-1976, Dec. 2012.

21.

S. K. Khadem, M. Basu, and M. F. Conlon "A review of parallel operation of active power filters in the distributed generation system," in Power Electronics and Applications Proceedings, pp. 1-10, 2011.

22.

J. H. R. Enslin and P. J. M. Heskes, “Harmonic interaction between a large number of distributed power inverters and the distribution network,” IEEE Trans. Power Electron., Vol 19, No. 6, pp. 1586-1593, Nov. 2004.

23.

J. H. R. Enslin and P. J. M. Heskes, "Harmonic interaction between a large number of distributed power inverters and the distribution network," in Power Electronics Specialist Conference, Vol. 4, pp. 1742-1747, 2003.

24.

M. Savaghebi, J. C. Vasquez, A. Jalilian, and J. M. Guerrero, “Secondary control for compensation of voltage harmonics and unbalance in microgrids,” Power Electronics for Distributed Generation Systems (PEDG), 3rd IEEE International Symposium, pp.46-53, 2012.

25.

M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary control for voltage quality enhancement in microgrids,” IEEE Trans. Smart Grid, Vol. 3, No. 4, pp. 1893-1902, Dec. 2012.

26.

M. Hamzeh, H. Karimi, H. Mokhtari, and J. Mahseredjian, "Control of a microgrid with unbalanced loads using virtual negative-sequence impedance loop," in Power Electronics, Drive Systems and Technologies Conference (PEDSTC), pp. 78-83, 2014.

27.

IEEE Recommended Practice for Electric Power Distribution for Industrial Plants, ANSI/IEEE Std. 141-1993, 1994.

28.

IEEE Recommended Practice for Monitoring Electric Power Quality, IEEE Std. 1159-2009, 2009.

29.

IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power System, IEEE Std. 519-1992, 2014.

30.

H. Laaksonen and K. Kauhaniemi, “Stability of microgrid with different configurations after islanding due to fault in the utility grid,” Int. Rev. Electr. Eng. (IREE), Vol. 3, No. 3, pp. 498-512, Jun. 2008.

31.

Q. Liu, Y. Tao, X. Liu, Y. Deng, and X. He, “Voltage unbalance and harmonics compensation for islanded microgrid inverters,” IET Power Electronics, Vol. 7, No. 5, pp. 1055-1063, May 2014.

32.

J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of power converters in AC microgrids.” IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4734-4749, Nov. 2012.

33.

A. M. Bouzid, J. M. Guerrero, A. Cheriti, M. Bouhamida, P. Sicard, and M. Benghanem, “A survey on control of electric power distributed generation systems for microgrid applications,” Renewable and Sustainable Energy Reviews, Vol. 44, pp. 751-766, Apr. 2015.

34.

S. J. Chiang and J. M. Chang, "Design and implementation of the parallelable active power filter," in Power Electronics Specialists Conference, PESC 99. 30th Annual IEEE, Vol. 1, pp. 406-411, 1999.

35.

A. G. Cerrada , O. P. Ardila, V. F. Batlle, P. R. Sánchez, and P. G. González, “Application of a repetitive controller for a three-phase active power filter,” IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 237-246, Jan. 2007.

36.

A. Chandra, B. Singh, B. N. Singh, and K. Al-Haddad, “An improved control algorithm of shunt active filter for voltage regulation, harmonic elimination, power factor correction, and balancing of nonlinear loads,” IEEE Trans. Power Electron., Vol. 15, No. 3, pp. 495-507, May 2000.

37.

B. Singh, and J. Solanki, “An implementation of an adaptive control algorithm for a three-phase shunt active filter,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 2811-2820, Aug. 2009.

38.

S. George and V. Agarwal, “A DSP based optimal algorithm for shunt active filter under nonsinusoidal supply and unbalanced load conditions,” IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 593- 601, Mar. 2007.

39.

A. Luo, S. Peng, C. Wu, J. Wu, and Z. Shuai, “Power electronic hybrid system for load balancing compensation and frequency selective harmonic suppression,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 723-732, Feb. 2012.

40.

Uceda, F. Aldana, and P. Martinez, "Active filters for static power converter," in Proc. Inst. Elect. Eng., Vol. 130, No. 5, pp. 347-354, 1983.

41.

H. Akagi, “New trends in active filters for power conditioning,” IEEE. Trans. Ind. Appl., Vol. 32, No 6, pp. 1312-1322, Nov. /Dec. 1996.

42.

F. Barrero, S. Martínez, F. Yeves, F. Mur, and P. Martínez, “Universal and reconfigurable to UPS active power filter for line conditioning,” IEEE Trans. Power Del., Vol. 18, No. 1, pp. 283-290, Jan. 2003.

43.

D. Graovac, V. A. Katic´, and A. Rufer, “Power quality problems compensation with universal power quality conditioning system,” IEEE Trans. Power Del., Vol. 22, No. 2, pp. 968-976, Apr. 2007.

44.

B. Singh, K. Al-Haddad, and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., Vol. 46, No. 5, pp. 960-971, Oct. 1999.

45.

N. A. Rahim, S. Mekhilef, and Z. Islam, "A new approach for harmonic compensation using single-Phase hybrid active power filter." in TENCON 2005 IEEE Region 10. Nov. 2005.

46.

Y. Li, D. M. Vilathgamuwa, and P. C. Loh, “A grid-interfacing power quality compensator for three-phase three-wire microgrid applications,” IEEE Trans. Power Electron., Vol. 21, No. 4, pp. 1021- 1031, Jul. 2006.

47.

O. Palizban and K. Kauhaniemi, “Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode,” Renewable and Sustainable Energy Reviews, Vol. 44. pp. 797-813, Apr. 2015.

48.

K. Zhang, Y. Kang, J. Xiong, and J. Chen, “Direct repetitive control of SPWM inverter for UPS purpose,” IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 784-792, May 2003.

49.

K. Zhou, K. Low, D. Wang, F. Luo, B. Zhang, and Y. Wang, “Zero-phase odd-harmonic repetitive controller for a single-phase PWM inverter,” IEEE Trans. Power Electron., Vol. 21, No. 1, pp. 193-201, Jan. 2006.

50.

R. Cárdenas, R. Pe˜na, J. Clare, P. Wheeler, and P. Zanchetta, “A repetitive control system for four-leg matrix converters feeding non-linear loads,” Electric Power Systems Research, Vol. 104, pp. 18- 27, Nov. 2013.

51.

M. B. Delghavi and A. Yazdani, “Islanded-mode control of electronically coupled distributed-resource units under unbalanced and nonlinear load conditions,” IEEE Trans. Power Del., Vol. 26, No. 2, pp. 661-673, Apr. 2011

52.

X. Zhang, J. Wang, and C. Li,” Three-phase four-leg inverter based on voltage hysteresis control,” IEEE International Conference on Electrical and Control Engineering, pp. 4482-4485, Jun. 2010.

53.

M. Hosseinpour, M. Mohammadian, and A. Y. Varjani, ”Design and analysis of the droop-controlled parallel four-leg inverters to share unbalanced and nonlinear loads,” Przegląd Elektrotechniczny, pp. 105-110, Jan. 2014.

54.

E. Rokrok and M. E. Hamedani, “Comprehensive control scheme for an inverter-based distributed generation unit,” Iranian Journal of Science & Technology, Transaction B: Engineering, Vol. 33, No. B6, pp. 477-490, 2009.

55.

M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid,” IEEE Trans. Smart Grid, Vol. 3, No. 2, pp. 797-807, Jun. 2012.

56.

M. Hamzeh, H. Karimi, and H. Mokhtari, “A new control strategy for a multi-bus MV microgrid under unbalanced conditions,” IEEE Trans. Power Syst., Vol. 27, No. 4, pp. 2225-2232, Nov. 2012.

57.

M. Savaghebi, A. Jalilian, J. C. Vasquez, and J. M. Guerrero, “Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp.1390-1402, Apr. 2013.

58.

J. C. Vasquez, J. M. Guerrero, M. Savaghebi, J. Eloy-Garcia, and R. Teodorescu, “Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp.1271-1280, Apr. 2013.

59.

M. Hamzeh, H. Karimi, and H. Mokhtari, “Harmonic and negative-sequence current control in an islanded multi-bus MV microgrid,” IEEE Trans. Smart Grid, Vol. 5, No. 1, pp. 167-176, Jan. 2014.

60.

H. Song and K. Nam, “Dual current control scheme for PWM converter under unbalanced input voltage conditions,” IEEE Trans. Ind. Electron.., Vol. 46, No. 5, pp. 953-959. Oct. 1999.

61.

Y. Suh, V. Tijeras, and T. A. Lipo, "A control method in dq synchronous frame for PWM boost rectifier under generalized unbalanced operating conditions," in Proceeding of IEEE 33rd Annual Power Electronics Specialists Conference (PESC'02), Vol. 3, pp. 1425-1430, 2002.

62.

R. A. Gannett, J. C. Sozio, and D. Boroyevich, "Application of synchronous and stationary frame controllers for unbalanced and non-linear load compensation in 4-leg inverters," Applied Power Electronics Conference and Exposition, Vol. 2, pp. 1038-1043, 2002.

63.

I. Vechiu, H. Camblong, G. Tapia, B. Dakyo, and O. Curea, “Control of four leg inverter for hybrid power system applications with unbalanced load,” Energy Conversion and Management, Vol. 48, No. 7, pp. 2119-2128, Jul. 2007.

64.

A. Mohd, E. Ortjohann, N. Hamsic, W. Sinsukthavorn, M. Lingemann, A. Schmelter, and D. Morton, “Control strategy and space vector modulation for three-leg four-wire voltage source inverters under unbalanced load conditions,” IET Power Electron., Vol. 3, No. 3, pp. 323-333, May 2010.

65.

I. Vechiu, O. Curea, and H. Camblong, “Transient operation of a four-leg inverter for autonomous applications with unbalanced load,” IEEE Trans. Power Electron., Vol. 25, No. 2, pp.399-407, Feb. 2010.

66.

E. Ortjohann, “A novel space vector modulation control strategy for three-leg four-wire voltage source inverters,” Power Electronics and Applications, pp. 1-10, Sep. 2007.

67.

W. Sinsukthavorn, E. Ortjohann, A. Mohd, N. Hamsic, D. Moton, “Control strategy for three-/four-wire-inverter- based distributed generation,” IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3890-3899, Oct. 2012.

68.

A. Teke and M. B. Latran, “Review of multifunctional inverter topologies and control schemes used in distributed generation systems,” Journal of Power Electronics, Vol. 14, No. 2, pp. 324-340, Mar. 2014.

69.

A. M. Salamah, S. J. Finney, and B. W. Williams, “Autonomous controller for improved dynamic performance of AC grid, parallel-connected, single-phase inverters,” IET Gen., Transm., Distrib., Vol. 2, No. 2, pp. 209-218, Mar. 2008.

70.

R. Kamel, A. Chaouachi, and K. Nagasaka, “Detailed analysis of micro-grid stability during islanding mode under different load conditions,” Engineering, Vol. 3, No. 5, pp. 508-516, May 2011.

71.

H. Karimi, H. Nikkhajoei, and R. Iravani, “Control of an electronically coupled distributed resource unit subsequent to an islanding event,” IEEE Trans. Power Del., Vol. 23, No. 1, pp. 493-501, Jan. 2008.

72.

D. P. Ariyasinghe and D. M. Vilathgamuwa, "Stability analysis of microgrids with constant power loads," in Proc. IEEE Int. Conf. Sustainable Energy Technol., pp. 279-284, Nov. 2008.

73.

D. M. Vilathgamuwa, X. N. Zhang, S. D. G. Jayasinghe, B. S. Bhangu, C. J. Gajanayake, and K. J. Tseng, "Virtual resistance based active damping solution for constant power instability in AC microgrids," in Proc. 37th Annual Conf. IEEE Ind. Electron. Soc., pp. 3646-3651, Nov. 2011.

74.

M. N. Marwali, J.-W. Jung, and A. Keyhani, “Control of distributed generation systems – Part II: Load sharing control,” IEEE Trans. Power Electron., Vol. 19, No. 6, pp. 1551-1561, Nov. 2004.

75.

H. Karimi, E. J. Davison, and R. Iravani, “Multivariable servomechanism controller for autonomous operation of a distributed generation unit: Design and performance evaluation,” IEEE Trans. Power Syst., Vol. 25, No. 2, pp. 853-865, May 2010.

76.

B. Bahrani, M. Saeedifard, A. Karimi, and A. Rufer, “A multivariable design methodology for voltage control of a single-DG-unit microgrid,” IEEE Trans. Ind. Informat., Vol. 9, No. 2, pp. 589-599, May 2013.