A New Symmetric Cascaded Multilevel Inverter Topology Using Single and Double Source Unit

- Journal title : Journal of Power Electronics
- Volume 15, Issue 4, 2015, pp.951-963
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2015.15.4.951

Title & Authors

A New Symmetric Cascaded Multilevel Inverter Topology Using Single and Double Source Unit

Mohd. Ali, Jagabar Sathik; Kannan, Ramani;

Mohd. Ali, Jagabar Sathik; Kannan, Ramani;

Abstract

In this paper, a new symmetric multilevel inverter is proposed. A simple structure for the cascaded multilevel inverter topology is also proposed, which produces a high number of levels with the application of few power electronic devices. The symmetric multilevel inverter can generate 2n+1 levels with a reduced number of power switches. The basic unit is composed of a single and double source unit (SDS-unit). The application of this SDS-unit is for reducing the number of power electronic components like insulated gate bipolar transistors, freewheeling diodes, gate driver circuits, dc voltage sources, and blocked voltages by switches. Various new algorithms are recommended to determine the magnitude of dc sources in a cascaded structure. Furthermore, the proposed topology is optimized for different goals. The proposed cascaded structure is compared with other similar topologies. For verifying the performance of the proposed basic symmetric and cascaded structure, results from a computer-based MATLAB/Simulink simulation and from experimental hardware are also discussed.

Keywords

Multilevel Inverter;Optimal Structure;Power Conversion;Power Semiconductor Switches;Total Harmonic Distortion (THD);

Language

English

Cited by

References

1.

J. Rodriguez, J.-S. Lai, and F. Z. Peng, “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron, Vol. 49, No. 4, pp.724-738, Aug. 2002.t.

2.

L. M. Tolbert, F. Z. Peng, and T. G. Habetler, “Multilevel converters for large electric drives,” IEEE Trans. Ind. Appl., Vol. 35, No. 1, pp. 36-44, Jan./Feb. 1999.

3.

L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, “The age of multilevel converters arrives,” IEEE Ind. Electron. Mag., Vol. 2, No. 2, pp. 28-39, Jun. 2008.

4.

N. S. Choi, J. G. Cho, and G. H. Cho, “A general circuit topology of multilevel inverter,” Power Electronics Specialists Conference, 1991. PESC '91 Record., 22nd Annual IEEE, pp. 96-103, Jun.1991.

5.

K. A. Tehrani, I. Rasoanarivo, and F.-M. Sargos, “Power loss calculation in two different multilevel inverter models (2DM2),” Electric Power Systems Research, Vol. 81, No. 2, pp. 297-307, Feb. 2011.

6.

C. O. Gerçk and M. Ermis, “Elimination of coupling transformer core saturation in cascaded multilevel converter-based T-STATCOM systems,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6796-6809, Dec. 2014.

7.

S. Bhattacharya, D. Mascarella, and G. Joó, “Modular multilevel inverter: A study for automotive applications,” Electrical and Computer Engineering (CCECE), 2013 26th Annual IEEE Canadian Conference on, pp. 1-6, 2013.

8.

R. Stala, “A natural DC-link voltage balancing of diode-clamped inverters in parallel systems,” IEEE Trans. Ind. Electron., Vol. 60, No. 11, pp. 5008-5018, Nov. 2013.

9.

J.-S. Lai and F. Z. Peng, “Multilevel converters-a new breed of power converters,” IEEE Trans. Ind. Appl., Vol. 32, No. 3, pp. 509-517, May/Jun. 1996.

10.

B. P. McGrath, D. G. Holmes, and W. Y. Kong, “A decentralized controller architecture for a cascaded h-bridge multilevel converter,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1169-1178, Mar. 2014.

11.

B. K. Bose, “Power electronics and motor drives recent progress and perspective,” IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 581-588, Feb. 2009.

12.

O. L. Jimenez, R. A. Vargas, J. Aguayo, J. E. Arau, G. Vela, and A. Claudio, “THD in cascade multilevel inverter symmetric and asymmetric,” Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 289-295, 2011.

13.

M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Péez, “A survey on cascaded multilevel inverters,” IEEE Trans. Ind. Electron, Vol. 57, No. 7, pp. 2197-2206, Jul. 2010.

14.

J. Ebrahimi, E. Babaei, and G. B. Gharehpetian, “A new topology of cascaded multilevel converters with reduced number of components for high-voltage applications,” IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3109-3118, Nov. 2011.

15.

R. S. Alishah, D. Nazarpour, S. H. Hosseini, and M. Sabahi, “Reduction of power electronic elements in multilevel converters using a new cascade structure,” IEEE Trans. Ind. Electron., Vol. 62, No.1, pp. 256-269, Jan. 2015.

16.

E. Babaei, A. Dehqan, and M. Sabahi, “A new topology for multilevel inverter considering its optimal structures,” Electric Power Systems Research, Vol. 103, pp. 145-156, Oct. 2013.

17.

J. Ebrahimi, E. Babaei, and G. B. Gharehpetian, “a new multilevel converter topology with reduced number of power electronic components,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 655-667, Feb. 2012.

18.

R. Shalchi Alishah, D. Nazarpour, S. H. Hosseini, and M. Sabahi, “Novel topologies for symmetric, asymmetric, and cascade switched-diode multilevel converter with minimum number of power electronic components,” IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5300-5310, Oct. 2014.

19.

K. Ramani, M. A. J. Sathik, and S. Sivakumar, “A new symmetric multilevel inverter topology using single and double source sub-multilevel inverters,” Journal of Power Electronics, Vol. 15, No. 1, pp. 96-105, Jan. 2015.

20.

P. Karuppusamy and A. M. Natarajan, “An adaptive neuro-fuzzy model to multilevel inverter for grid connected photovoltaic system,” Journal of Circuits, Systems and Computers, Vol. 24, No. 5, Jun. 2015.

21.

M. H. Taghvaee, M. A. M. Radzi, S. M. Moosavain, H. Hizam, and M. H. Marhaban, “A current and future study on non-isolated DC–DC converters for photovoltaic applications,” Renewable and Sustainable Energy Reviews, Vol. 17, pp. 216-227, Jan. 2013.

22.

H. Rezk and A. M. Eltamaly, “A comprehensive comparison of different MPPT techniques for photovoltaic systems,” Solar Energy, Vol. 112, pp. 1-11, Feb. 2015.

23.

B. P. McGrath and D. G. Holmes, “Multicarrier PWM strategies for multilevel inverters,” IEEE Trans. Ind. Electron, Vol. 49, No. 4, pp. 858-867, Aug. 2002.

24.

A. M. Y. M. Ghias, J. Pou, V. G. Agelidis, and M. Ciobotaru, “Voltage balancing method for a flying capacitor multilevel converter using phase disposition PWM,” IEEE Trans. Ind. Electron., Vol. 61, No. 12, pp. 6538-6546, Dec. 2014.

25.

M. A. S. Aneesh, A. Gopinath, and M. R. Baiju, “A simple space vector PWM generation scheme for any general -level inverter,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1649-1656, May 2009.

26.

C. Buccella, C. Cecati, M. G. Cimoroni, and K. Razi, “Analytical method for pattern generation in five-level cascaded H-bridge inverter using selective harmonic elimination,” IEEE Trans. Ind. Electron, Vol. 61, No.11, pp. 5811-5819, Nov. 2014.

27.

J. Zaragoza, J. Pou, S. Ceballos, E. Robles, P. Ibaez, and J. L. Villate, “A comprehensive study of a hybrid modulation technique for the neutral-point-clamped converter,” IEEE Trans. Ind. Electron,Vol. 56, No. 2, pp. 294-304, Feb. 2009.

28.

A. Shukla, A. Ghosh, and A. Joshi, “Hysteresis modulation of multilevel inverters,” IEEE Trans. Power Electron., Vol. 26, No. 5, pp. 1396-1409, May 2011.

29.

P. Hu, and D. Jiang, “A level-increased nearest level modulation method for modular multilevel converters,” IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 1836–1842, Apr. 2015.

30.

Z. Du, L. M. Tolbert, B. Ozpineci, and J. N. Chiasson, “Fundamental frequency switching strategies of a seven-level hybrid cascaded H-bridge multilevel inverter,” IEEE Trans. Power Electron., Vol. 24, No. 1, pp. 25-33, Jan. 2009.

31.

S. Kouro, R. Bernal, H. Miranda, C. A. Silva, and J. Rodriguez, “High-performance torque and flux control for multilevel inverter fed induction motors,” IEEE Trans. Power Electron., Vol. 22, No. 6, pp. 2116-2123, Nov. 2007.

32.

Y. Zhang, S. Sobhani, and R. Chokhawala, Snubber Considerations for IGBT Applications, Application Note International Rectifier, pp. 1-9, 1995.