Torque Ripple Suppression Method for BLDCM Drive Based on Four-Switch Three-Phase Inverter

- Journal title : Journal of Power Electronics
- Volume 15, Issue 4, 2015, pp.974-986
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2015.15.4.974

Title & Authors

Torque Ripple Suppression Method for BLDCM Drive Based on Four-Switch Three-Phase Inverter

Pan, Lei; Sun, Hexu; Wang, Beibei; Su, Gang; Wang, Xiuli; Peng, Guili;

Pan, Lei; Sun, Hexu; Wang, Beibei; Su, Gang; Wang, Xiuli; Peng, Guili;

Abstract

A novel inverter fault-tolerant control scheme is proposed to drive brushless DC motor. A fault-tolerant inverter and its three fault-tolerant schemes (i.e., phase A fault-tolerant, phase B fault-tolerant, and phase C fault-tolerant) are analyzed. Eight voltage vectors are summarized and a voltage vector selection table is used in the control scheme to improve the midpoint current of the split capacitors. A stator flux observer is proposed. The observer can improve flux estimation, which does not require any speed adaptation mechanism and is immune to speed estimation error. Global stability of the flux observer is guaranteed by the Lyapunov stability analysis. A novel stator resistance estimator is incorporated into the sensorless drive to compensate for the effects of stator resistance variation. DC offset effects are mitigated by introducing an integral component in the observer gains. Finally, a control system based on the control scheme is established. Simulation and experiment results show that the method is correct and feasible.

Keywords

DC offset;Fault-tolerant inverter;Flux observer;Stator resistance;Voltage space vector;

Language

English

Cited by

1.

2.

References

1.

S. De, M. Rajne, S. Poosapati, C. Patel, and K. Gopakumar, “Low-inductance axial flux BLDC motor drive for more electric aircraft,” IET Power Electronics, Vol. 5, No. 1, pp. 124-133, Jan. 2012.

2.

H.-W. Kim, K.-T. Kim, Y.-S. Jo, et al, “Optimization methods of torque density for developing the neodymium free SPOKE-type BLDC motor,” IEEE Trans. Magn., Vol. 49, No. 5, pp.2173-2176, May 2013.

3.

D. K. Kastha and B. K. Bose, “Investigation of fault modes of voltage-fed inverter system for induction motor drive,” IEEE Trans. Ind. Appl., Vol. 30, No. 4, pp. 1028-1038, Aug. 1994.

4.

M. Khan and M. A. Rahman, “Development and implementation of a novel fault diagnostic and protection technique for IPM motor drives,” IEEE Trans. Ind. Electron., Vol. 56, No. 1, pp. 85-92, Jan. 2009.

5.

B.-K. Lee, T.-H. Kim, and M. Ehsani, “On the feasibility of four-switch three-phase BLDC motor drives for low cost commercial applications: Topology and control,” IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 164-172, Jan. 2003.

6.

J.-H. Lee, T.-S. Kim, and D.-S. Hyun, "A study for improved of speed response characteristic in four-switch three-phase BLDC motor," in Proc. IEEE Ind. Electron. Soc. Conf., pp. 1339-1343, 2004.

7.

S.-H. Park, T.-S. Kim, S.-C. Ahn, D.-S. Hyun, “A simple current control algorithm for torque ripple reduction of brushless DC motor using four-switch three-phase inverter,” 34th Annual Conference on IEEE Power Electronics Specialist, PESC 2003, pp. 574-579, Jun. 2003.

8.

B. K. Lee, T. H. Kim, and M. Ehsani, “On the feasibility of four-switch three-phase BLDC motor drives for low cost commercial applications: topology and control,” IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 164-172, Jan. 2003.

9.

S. J. Park, H. W. Park, M. H. Lee, and F. Harashima, “A new approach for Minimum torque ripple maximum efficiency control of bldc motor,” IEEE Trans. Ind. Electron., Vol. 47, No. 1, pp. 109-114, Feb. 2000.

10.

J. Fang, X. Zhou, and G. Liu, “Precise accelerated torque control for small inductance brushless DC motor,” IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1400-1412, Mar. 2013.

11.

P. Damodharan and K. Vasudevan, “Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference,” IEEE Trans. Energy Convers., Vol. 25, No. 3, pp. 661-668, Sep. 2010.

12.

L. de Lillo, L. Empringham, P. W. Wheeler, S. Khwan-on, C. Gerada, M. N. Othman, and X. Huang, “Multiphase power converter drive for fault-tolerant machine development in aerospace applications,” IEEE Trans. Ind. Electron., Vol. 57, No. 2, pp. 575-583, Feb. 2010.

13.

X. Huang, A. Goodman, C. Gerada, Y. Fang, and Q. Lu, “A single sided matrix converter drive for a brushless DC motor in aerospace applications,” IEEE Trans. Ind. Electron., Vol. 59, No. 9, pp. 3542-3552, Sep. 2012.

14.

J. Kim, J. Hong, and K. Nam, “A current distortion compensation scheme for four-switch converters,” IEEE Trans. Power Electron., Vol. 24, No. 4, pp. 1032-1040, Apr. 2009.

15.

M. B. de Rossiter Corrêa, C. B. Jacobina, E. R. C. da Silva, and A. M. N. Lim, “A general PWM strategy for four-switch three-phase inverters,” IEEE Trans. Power Electron., Vol. 21, No. 6, pp.1618-1627, Nov. 2006.

16.

C.-T. Lin, C.-W. Hung, and C.-W. Liu, “Position sensorless control for four-switch three-phase brushless DC motor drives,” IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 438-444, Jan. 2008.

17.

C. Xia, Z. Li, and T. Shi, “A control strategy for four-switch three phase brushless dc motor using single current sensor,” IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 2058-2066, Jun. 2009.

18.

Q. Fu and H. Lin, “Sliding mode driving strategy for four-switch three-phase brushless DC motor,” SICE-ICASE, International Joint Conference, pp. 696-701, Oct. 2006.

19.

Z. Q. Zhu, K. Utaikaifa, K. Hoang, Y. Liu, and D. Howe, "Direct torque control of three-phase PM brushless AC motor with one phase open circuit fault," in Proc. IEEE Int. Conf. Elect. Mach. Drives, pp. 1408-1415, May 2009.

20.

C. T. Lin, C. W. Hung, and C. W. Liu, "Sensorless control for four-switch three-phase brushless DC motor drives," in Proc. 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting (IAS'06), Vol. 4, pp. 2049-2053, Oct. 2006.

21.

A. H. Niasar, H. Moghbeli, and A. Vahedi, "Sensorless control for four-switch, three-phase brushless DC motor drive," in Proc. 15'th Iranian Conf. on Electrical Engineering, Vol. 1, pp. 2048-2053, Oct. 2006.

22.

A. H. Niasar, A. Vahedi, and H. Moghbelli, “A novel position sensorless control of a four-switch, brushless DC motor drive without phase shifter,” IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 3079-3087, Nov. 2008.