A New Control Strategy for a Three-Phase PWM Current-Source Rectifier in the Stationary Frame

- Journal title : Journal of Power Electronics
- Volume 15, Issue 4, 2015, pp.994-1005
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2015.15.4.994

Title & Authors

A New Control Strategy for a Three-Phase PWM Current-Source Rectifier in the Stationary Frame

Guo, Qiang; Liu, Heping; Zhang, Yi;

Guo, Qiang; Liu, Heping; Zhang, Yi;

Abstract

This paper presents a novel power control strategy for PWM current-source rectifiers (CSRs) in the stationary frame based on the instantaneous power theory. In the proposed control strategy, a virtual resistance based on the capacitor voltage feedback is used to realize the active damping. In addition, the proportional resonant (PR) controller under the two-phase stationary coordinate is designed to track the ac reference current and to avoid the strong coupling brought about by the coordinate transformation. The limitations on improving steady-state performance of the PR controller is investigated and mitigated using a cascaded lead-lag compensator. In the z-domain, a straightforward procedure is developed to analyze and design the control-loop with the help of MATLAB/SISO software tools. In addition, robustness against parameter variations is analyzed. Finally, simulation and experimental results verify the proposed control scheme and design method.

Keywords

Active damping;Controller design;Current-source rectifier;Proportional resonant;Pulse-width modulated;Stability;

Language

English

Cited by

References

1.

J. R. Rodriguez, J. W. Dixon, J. R. Esponoza, J. Pontt, and P. Lezana, “PWM regenerative rectifiers: State of the art,” IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 5-22, Feb. 2005.

2.

T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems-Part II,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 543-560, Feb. 2014.

3.

A. Stupar, T. Friedli, J. Minibock, and J. W. Kolar, “Towards a 99% efficient three-phase buck-type PFC rectifier for 400-V dc distribution systems,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 1732-1744, Apr. 2012.

4.

Z. Bai, X. Ruan, and Z. Zhang, “A generic six-step direct PWM (SS-DPWM) scheme for current source converter,” IEEE Trans. Power Electron., Vol. 25, No. 3, pp. 659-666, Mar. 2010.

5.

K. Basu, A. K. Sahoo, V. Chandrasekaran, and N. Mohan, “Grid-side ac line filter design of a current source rectifier with analytical estimation of input current ripple,” IEEE Trans. Power Electron., Vol. 29, No. 12, pp. 6394-6405, Dec. 2014.

6.

M. H. Ali, B. Wu, and R. A. Dougal, “An overview of SMES applications in power and energy systems,” IEEE Trans. Sustain. Energy, Vol. 1, No. 1, pp. 38-47, Apr. 2010.

7.

M. Su, H. Wang, Y Sun, J. Yang, W. Xiong, and Y. Liu, “AC/DC matrix converter with an optimized modulation strategy for V2G applications,” IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5736-5745, Dec. 2013.

8.

H. Bilgin and M. Ermis, “Design and implementation of a current-source converter for use in industry applications of D-STATCOM,” IEEE Trans. Power Electron., Vol. 25, No. 8, pp. 1943-1957, Aug. 2010.

9.

A. A. A. Radwan and Y. A.-R. I. Mohamed, “Analysis and active suppression of ac- and dc-side instabilities in grid-connected current-source converter-based photovoltaic system,” IEEE Trans. Sustain. Energy, Vol. 4, No. 3, pp. 443-450, Jul. 2011.

10.

A. Bouafia, J. -P. Gaubert, and F. Krim, “Predictive direct power control of three-phase pulse width modulation (PWM) rectifier using space-vector modulation (SVM),” IEEE Trans. Power Electron., Vol. 25, No.1, pp. 228-236, Jan. 2010.

11.

X. H. Wu, S. K. Panda, and J. X. Xu, “Design of a plug-in repetitive control scheme for eliminating supply-side current harmonics of three-phase PWM boost rectifiers under generalized supply voltage conditions,” IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1800-1810, Jul. 2010.

12.

W. Zhang, Y. Hou, X. Liu, and Y. Zhou, “Switched control of three-phase voltage source PWM rectifier under a wide-range rapidly varying active load,” IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 881-890, Feb. 2012.

13.

Y. Shtessel, S. Baev, and H. Biglari, “Unity power factor control in three phase ac/dc boost converter using sliding modes,” IEEE Trans. Ind. Electron., Vol. 55, No. 11, pp. 3874-3882, Nov. 2008.

14.

Y. Neba, “A simple method for suppression of resonance oscillation in PWM current source converter,” IEEE Trans. Power Electron., Vol. 20, No. 1, pp. 132-139, Jan. 2005.

15.

Y. W. Li, B. Wu, N. Zargari, J. Wiseman, and D. Xu, “Damping of PWM current-source rectifier using a hybrid combination approach,” IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1383-1393, Jul. 2007.

16.

Y.W Li, “Control and resonance damping of voltage-source and current-source converters with LC filters,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1511-1521, May 2009.

17.

Z. H. Bai, H. Ma, D. W. Xu, and B. Wu, “Control strategy with a generalized DC current balancing method for multi-module current-source converter,” IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 366-373, Jan. 2014.

18.

Z. H. Bai, H. Ma, D. W. Xu, B. Wu, Y. T. Fang, and Y. Y. Yao, “Resonance damping and harmonic suppression for grid-connected current-source converter,” IEEE Trans. Ind. Electron., Vol. 61, No. 7, pp. 3146-3154, Jul. 2014.

19.

M. H. Bierhoff and F. W. Fuchs, “Active damping for three-phase PWM rectifiers with high-order line-side filters,” IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 371-379, Feb. 2009.

20.

M. Salo and H. Tuusa, “A vector controlled current-source PWM rectifier with a novel current damping method,” IEEE Trans. Power Electron., Vol. 15, No. 3, pp. 464-470, May 2000.

21.

J. C. Wiseman and B. Wu, “Active damping control of a high-power PWM current-source rectifier for line-current THD reduction,” IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 758-764, Jun. 2005.

22.

F. Liu, B. Wu, N. R. Zargari, and M. Pande, “An active damping method using inductor-current feedback control for high-power PWM current source rectifier,” IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2580-2587, Sep. 2011.

23.

K. Wei, Z. Lixia, and W. Yansong, “Study on output characteristic of bi-direction current source converters,” IET Power Electron., Vol. 5, No. 7, pp. 929-934, Aug. 2012.

24.

Z. Li, Y. Li, P. Wang, H. Zhu, C. Liu, and W. Xu, “Control of three phase boost-type PWM rectifier in stationary frame under unbalanced input voltage,” IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2521-2530, Oct. 2010.

25.

D. Roiu, R. I. Bojoi, L. R. Limongi, and A. Tenconi, “New stationary frame control scheme for three-phase PWM rectifiers under unbalanced voltage dips conditions,” IEEE Trans. Ind. Appl., Vol. 46, No. 1, pp. 268-277, Jan./Feb. 2010.

26.

C. Xia, Z. Wang, T. Shi, and X. He, “An improved control strategy of triple line-voltage cascaded voltage source converter based on proportional-resonant controller,” IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2894-2908, Jul. 2013.

27.

H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, Wiley-IEEE Press, Hoboken, Chap. 3, 2007.

28.

R. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, "Proportional resonant controllers and filters for grid-connected voltage-source converters," in IEE Proc. Electric Power Appl., Vol. 153, No. 5, pp. 201-209, 2006.

29.

M. Liserre, R. Teodorescu, and F. Blaabjerg, “Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values,” IEEE Trans. Power Electron., Vol. 21, No. 1, pp. 263-272, Jan.2006.

30.

H.-J. Lee, S. Jung, and S.-K. Sul, “A current controller design for current source inverter-fed ac machine drive system,” IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1366-1381, Mar. 2013.

31.

S. G. Parker, B. P. McGrath, and D. G Holmes, “Regions of active damping control for LCL filters,” IEEE Trans. Ind. Appl., Vol. 50, No. 1, pp. 424-432, Jan./Feb. 2014.

32.

D. H. Pan, X. B. Ruan, C. L. Bao, W. W. Li, and X. H. Wang, “Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3414-3427, Jul. 2014.

33.

A. Yepes, F. Freijedo, J. Doval-Gandoy, O. Lopez, J. Malvar, and P. Fernandez-Comesana, “Effects of discretization methods on the performance of resonant controllers,” IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1692-1712, Jul. 2010.