An Improved SVPWM Control of Voltage Imbalance in Capacitors of a Single-Phase Multilevel Inverter

- Journal title : Journal of Power Electronics
- Volume 15, Issue 5, 2015, pp.1235-1243
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2015.15.5.1235

Title & Authors

An Improved SVPWM Control of Voltage Imbalance in Capacitors of a Single-Phase Multilevel Inverter

Ramirez, Fernando Arturo; Arjona, Marco A.;

Ramirez, Fernando Arturo; Arjona, Marco A.;

Abstract

This paper presents a modified Space Vector Pulse Width Modulation Technique (SVPWM), which solves the well-known problem of voltage imbalance in the capacitors of a single-phase multilevel inverter. The proposed solution is based on the measurement of DC voltage levels at each capacitor of the inverter DC bus. The measurements are then used to adjust the size of the active vectors within the SVPWM algorithm to keep the voltage waveform sinusoidal regardless of any voltage imbalance on the DC link capacitors. When a voltage deviation exceeds a predetermined hysteresis band, the correspondent voltage vector is restricted to restore the voltage level to an acceptable threshold. Hence, the need for external voltage regulators for the voltage capacitors is eliminated. The functionality of the proposed algorithm is successfully demonstrated through simulations and experiments on a grid tied application.

Keywords

Capacitor Voltage Balancing;Multilevel Inverter;Single-phase inverter;Space Vector Modulation;

Language

English

Cited by

References

1.

R. Nagarajan and M. Saravanan, “Performance analysis of a novel reduced switch cascaded multilevel inverter,” Journal of Power Electronics, Vol. 14, No. 1, pp.48-60, Jan. 2014.

2.

E. Beser, B. Arifoglu, and E. K. Beser, “Design and application of a single phase multilevel inverter suitable for using as a voltage harmonic source,” Journal of Power Electronics, Vol. 10, No. 2, pp.138-145, Mar. 2010.

3.

E. Babaei, A. Dehqan, and M. Sabahi, “Improvement of the performance of the cascaded multilevel inverters using power cells with two series legs,” Journal of Power Electronics, Vol. 13, No. 2, pp. 223-231, Mar. 2013.

4.

N. A. Rahim, K. Chaniago, and J. Selvaraj, “Single-phase seven-level grid-connected inverter for photovoltaic system,” IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2435–2443, Jun. 2011.

5.

N. A. Rahim and J. Selvaraj, “Multi-string five-level inverter with novel PWM control scheme for PV application,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2111-2121, Jun. 2010.

6.

F. Khoucha, S. M. Lagoun, K. Marouani, A. Kheloui, and M. El Hachemi Benbouzid, “Hybrid cascaded H-bridge multilevel-inverter induction-motor-drive direct torque control for automotive applications,” IEEE Trans. Ind. Electron., Vol. 57, No. 3, pp. 892-899, Mar. 2010.

7.

Y. Hinago and H. Koizumi, “A single-phase multilevel inverter using switched series/parallel DC voltage sources,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2643-2650, Aug. 2010.

8.

J. Pereda and J. Dixon, “High-frequency link: A solution for using only one DC source in asymmetric cascaded multilevel inverters,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 3884-3892, Sep. 2011.

9.

K. K. Gupta and S. Jain, “A novel multilevel inverter based on switched DC sources,” IEEE Trans. Ind. Electron., Vol. 61, No. 7, pp. 3269-3278, Jul. 2014.

10.

Y. Hinago and H. Koizumi, “A single-phase multilevel inverter using switched series/parallel DC voltage sources,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 2643-2650, Aug. 2010.

11.

F. Z. Peng, “A generalized multilevel inverter topology with self voltage balancing,” IEEE Trans. Ind. Appl., Vol. 37, No. 2, pp. 611-618, Mar. 2001.

12.

A. Jouanne, S. Dai, and H. Zhang, “A multilevel inverter approach providing DC-link balancing, ride-through enhancement, and common-mode voltage elimination,” IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 611-618, Aug. 2002.

13.

Z. Pan and F. Z. Peng, “A sinusoidal PWM method with voltage balancing capability for diode-clamped five-level converters,” IEEE Trans. Ind. Appl., Vol. 45, No. 3, pp. 1028-1034, May/Jun. 2009.

14.

J. Rodriguez, L.G. Franquelo, and S. Kouro, J. I. Leon, R. C. Portillo, M. A. M. Prats, and M. A. Perez, “Multilevel converters: An Enabling Technology for high-power applications,” in Proc. The IEEE, Vol. 97, No. 11, pp. 1786-1817, Nov. 2009.

15.

W. Fei, X. Du, and B. Wu, “A generalized half-wave symmetry SHE-PWM formulation for multilevel voltage inverters,” IEEE Trans. Ind. Electron., Vol. 57, No. 9, pp. 3030-3038, Sep. 2010.

16.

L. Gao and J. E. Fletcher, “A space vector switching strategy for three-level five-phase inverter drives,” IEEE Trans. Ind. Electron., Vol. 57, No. 7, pp. 2332-2343, Jul. 2010.

17.

A. Lewicki, Z. Krzeminski, and H. Abu-Rub, “Space-vector pulsewidth modulation for three-level NPC converter with the neutral point voltage control,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5076-5086, Nov. 2011.

18.

J. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, “Review of three-phase PWM AC-AC converter topologies,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 4988-5006, Nov. 2011.

19.

Q. Zhang, X. D. Sun, Y. R. Zhong, M. Matsui, and B. Y. Ren, “Analysis and design of a digital phase-locked loop for single-phase grid-connected power conversion systems,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3581-3592, Aug. 2011

20.

E. Robles, S. Ceballos, J. Pou, J. L. Martín, J. Zaragoza, and P. Ibañez, “Variable-frequency grid-sequence detector based on a quasi-ideal low-pass filter stage and a phase-locked loop,” IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2552-2563, Oct. 2010.

21.

L. Zhang, L. Harnefors, and H. P. Nee, “Power-synchronization control of grid-connected voltage-source converters,” IEEE Trans. Power Syst., Vol. 25, No. 2, pp. 809-820, May 2010.

22.

B. Bahrani, A. Rufer, S. Kenzelmann, and L.A.C. Lopes, “Vector control of single-phase voltage-source converter based on fictive-axis emulation,” IEEE Trans. Ind. Appl., Vol. 47, No. 2, pp. 831-840, Apr. 2011.

23.

M. Manilowski, "Sensorless control strategies for three-phase PWM rectifiers," PhD. Thesis, Warsaw University of Technology, 2001.

24.

S. Bhowmik, A. van Zyl, R. Spee, and J. H. R. Enslin, “Sensorless current control for active rectifiers,” IEEE Trans. Ind. Appl., Vol. 33, No. 3, pp. 765,773, May/Jun. 1997

25.

K. Sano and H Fujita, “Voltage-balancing circuit based on a resonant switched-capacitor converter for multilevel inverters,” IEEE Trans. Ind. Appl., Vol. 44, No. 6, pp. 1768-1776, Nov. 2008.

26.

K. S. Gayathri Devi, S. Arun, and C. Sreeja, “Comparative study on different five level inverter topologies,” Electrical Power and Energy systems, Vol. 63, pp. 363-372, 2014.

27.

Microchip, "Real Time Data Monitor User's guide", http://ww1.microchip.com/downloads/en/DeviceDoc/70567A.pdf, 2008.