Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

- Journal title : Journal of Power Electronics
- Volume 15, Issue 5, 2015, pp.1358-1366
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2015.15.5.1358

Title & Authors

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

Phan, Dinh Hieu; Huang, ShouDao;

Phan, Dinh Hieu; Huang, ShouDao;

Abstract

This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.

Keywords

Maximum power point tracking;Permanent magnet synchronous generator;Sliding mode control;Super-twisting algorithm;Variable wind turbine;

Language

English

References

1.

GWEC global wind energy council, Global wind statistics 2013, http://www.gwec.net, Feb. 2014.

2.

B. Wu, Y. Lang, N. Zargari, S. Kouro, Power conversion and control of wind energy system, John Wiley&Son, Chap.1, 2011.

3.

M. Chinchilla, S. Arnaltes, and J. C. Burgos, “Control ofpermanent magnet generators applied to variable-speed wind-energy systems connected to the grid,” IEEE Trans. Energy Convers., Vol. 21, No. 1, pp. 130-135, Mar. 2006.

4.

H. Polinder, F. F.Avan der Pijl, and P. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines,” IEEE Trans. Energy Convers., Vol. 21, No. 3, pp. 543-550, Sep. 2006.

5.

S. Li, T. A. Haskew, and L. Xu, “Conventional and novel control designs for direct driven PMSG wind turbines,” Electr. Power Syst. Res., Vol. 80, No. 3, pp. 328-338, Mar. 2010.

6.

S. Li, T. A. Haskew, R. P. Swatloski, and W. Gathings, “Optimal and direct-current vector control direct-driven PMSG wind turbines,” IEEE Trans. Power Electron., Vol. 27, No.5, pp. 2325-2337, May 2012.

7.

F. D. Bianchi, H. N. D. Battista, and R. J. Mantz, Wind turbine control systems: Principles, Modeling and Gain Scheduling Design, Springer-Verlag, Chap.6, 2007.

8.

S. M. Muyeen, and Ahmed Al – Durra, “Modeling and control strategies of fuzzy logic controlled inverter system for grid interconnected variable speed wind generator,” IEEE Syst. J., Vol.7, No. 4, pp. 817-824, Dec. 2013.

9.

E. Cadenas and W. Rivera, “Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks,” Renew. Energy, Vol. 34, No. 1, pp. 274-278, Jan. 2009.

10.

K. H Kim, Y. C Jeung, D. C Lee, and H. G Kim, “LVRT scheme of PMSG wind power systems based on feedback linearization, ” IEEE Trans. Power Electron., Vol. 27, No. 5, pp. 2376-2384, May 2012.

11.

A. El Magri, F. Giri, G. Besanc, A. E. Fadili, L. Dugard, and F. Z. Chaoui, “Sensorless adaptive output feedback control of wind energy systems with PMSG generators,” Control Eng. Pract., Vol. 21, No. 4, pp. 530-543, Dec. 2012.

12.

B. Beltran, T. Ahmed-Ali, and M. E. H. Benbouzid, “Sliding mode power control of variable-speed wind energy conversion systems,” IEEE Trans. Energy Convers., Vol. 23, No. 2, pp. 551-558, Jun. 2008.

13.

M. I. Martinez, G. Tapia, A. Susperregui, and H. Camblong “Sliding-mode control for DFIG rotor and grid-side converters under unbalanced and harmonically distorted grid voltage,” IEEE Trans. Energy Convers., Vol. 27, No.2, pp. 328-338, Jun. 2012.

14.

L. Shang and J. Hu, “Sliding-mode-based direct power control of grid-connected wind-turbine-driven doubly fed induction generators under unbalanced grid voltage conditions,” IEEE Trans. Energy Convers., Vol.27, No. 2, pp. 362-373, Jun. 2012.

15.

M. L. Corradini, G. Ippoliti, and G. Orlando, “Robust control of variable-speed wind turbines based on an aerodynamic torque observer,” IEEE Trans. Contr. Syst. Technol., Vol. 27, No. 4, pp. 1199-1206, Jul. 2013.

16.

B. Beltran, T. Ahmed-Ali, and M. Benbouzid, “High-order sliding-mode control of variable-speed wind turbines,” IEEE Trans. Ind. Electron., Vol. 56, No. 9, pp. 3314-3321, Sep. 2009.

17.

J. A. Moreno and M. Osorio, “A Lyapunov approach to second-order sliding mode controllers and observers,” in Proc. 47th IEEE Conf. Decis. Control, pp. 2856-2861, 2008.

18.

S. Benelghali, M. E. H. Benbouzid, J. Charpentier, T. Ahmed-Ali, and I. Munteanu, “Experimental validation of a marine current turbine simulator: Application to a permanent magnet synchronous generator-based system second-order sliding mode control,” IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 118-126, Jan. 2011.

19.

A. D´avila, J. Moreno, and L. Fridman, “Variable gains Super-Twisting algorithm: A Lyapunov based design,” Amer. Control Conf., pp. 968-973, 2010.

20.

C. Evangelista, P. Puleston, F. Valenciaga, and L. Fridman, “Lyapunov designed Super-twisting sliding mode control for wind energy conversion optimization,” IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 538-545, Feb. 2012.

21.

C. Evangelista, F. Valenciaga, and P. Puleston, “Active and reactive power control for wind turbine based on a MIMO 2-Sliding mode algorithm with variable gains,” IEEE Trans. Energy Convers., Vol.28, No. 3, pp. 682-689, Sep. 2013.

22.

S. Alepuz, A. Calle, S. B. Monge, S. Kouro, and B. Wu, “Use of stored energy in PMSG rotor inertia for low-voltage ride-through in back-to-back NPC converter-based wind power systems,” IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 1787-1796, May. 2013.

23.

K. H. Kim and M. J. Youn, “A simple and robust digital current control technique of a PM synchronous motor using time delay control approach,” IEEE Trans. Power Electron.,Vol. 16, No. 1, pp. 72-82, Jan. 2001.

24.

H. Khalil, Nonlinear Systems, NJ: Prentice-Hall, Chap.3 2002.