JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Investigation of a Hybrid HVDC System with DC Fault Ride-Through and Commutation Failure Mitigation Capability
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 15, Issue 5,  2015, pp.1367-1379
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2015.15.5.1367
 Title & Authors
Investigation of a Hybrid HVDC System with DC Fault Ride-Through and Commutation Failure Mitigation Capability
Guo, Chunyi; Zhao, Chengyong; Peng, Maolan; Liu, Wei;
  PDF(new window)
 Abstract
A hybrid HVDC system that is composed of line commutated converter (LCC) at the rectifier side and voltage source converter (VSC) in series with LCC at the inverter side is studied in this paper. The start-up strategy, DC fault ride-through capability, and fault recovery strategy for the hybrid HVDC system are proposed. The steady state and dynamic performances under start-up, AC fault, and DC fault scenarios are analyzed based on a bipolar hybrid HVDC system. Furthermore, the immunity of the LCC inverter in hybrid HVDC to commutation failure is investigated. The simulation results in PSCAD/EMTDC show that the hybrid HVDC system exhibits favorable steady state and dynamic performances, in particular, low susceptibility to commutation failure, excellent DC fault ride-through, and fast fault recovery capability. Results also indicate that the hybrid HVDC system can be a good alternative for large-capacity power transmission over a long distance byoverhead line.
 Keywords
Commutation failure;DC fault ride-through;hybrid HVDC;Line commutated converter;Voltage sourced converter;
 Language
English
 Cited by
 References
1.
R. Li, S. Bozhko, and G. Asher, “Frequency control design for offshore wind farm grid with LCC-HVDC link connection,” IEEE Trans. Power Electron., Vol. 23, No. 3, pp. 1085-1092, May 2008. crossref(new window)

2.
C. Guo, Y. Zhang, A. M. Gole, and C. Zhao, “Analysis of dual-infeed HVDC with LCC-HVDC and VSC-HVDC,” IEEE Trans. Power Del., Vol. 27, No. 3, pp. 1529-1537, Jul. 2012. crossref(new window)

3.
N. Flourentzou, V. G. Agelidis, and G. D. Demetriades, “VSC-based HVDC power transmission systems: An overview,” IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 592-602, Mar. 2009. crossref(new window)

4.
C. Guo and C. Zhao, “Supply of an entirely passive AC network through a double-infeed HVDC system,” IEEE Trans. Power Electron., Vol. 25, No. 11, pp. 2835-2841, Nov. 2010. crossref(new window)

5.
C. Du, E. Agneholm, and G. Olsson, “Comparison of different frequency controllers for a VSC-HVDC supplied system,” IEEE Trans. Power Del., Vol. 23, No. 4, pp. 2224-2232, Oct. 2008. crossref(new window)

6.
A. Lesnicar and R. Marquardt, “An innovative modular multilevel converter topology suitable for a wide power range,” IEEE Bologna Power Tech Conf., 2003.

7.
M. Glinka and R. Marquard. “A new AC/AC multilevel converter family,” IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 662- 669, Jun. 2005. crossref(new window)

8.
S. Rohner, S. Bernet, M. Hiller, and R. Sommer, “Modulation, losses, and semiconductor requirements of modular multilevel converters,” IEEE Trans. Ind. Appl., Vol. 57, No. 8, pp. 2633-2642, Aug. 2010.

9.
N. B. Negra, J. Todorovic, and T. Ackermann, “Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms,” Elect.Power Syst. Res., Vol. 76, No. 11, pp. 916-927, Jul. 2006. crossref(new window)

10.
C. Guo, Y. Zhang, A. M. Gole, and C. Zhao. “Analysis of dual-infeed HVDC with LCC-HVDC and VSC-HVDC,” IEEE Trans. Power Del., Vol. 27, No. 3, 1529-1537, Jul. 2012. crossref(new window)

11.
Z. Zhao and M. R. Iravani, “Application of GTO voltage source inverter in a hybrid HVDC link,” IEEE Trans. Power Del., Vol. 9, No. 1, pp. 369-377, Jan. 1994. crossref(new window)

12.
B. R. Andersen and L. Xu, “Hybrid HVDC system for power transmission to island networks,” IEEE Trans. Power Del., Vol. 19, No. 4, pp. 1884-1890, Oct. 2004, crossref(new window)

13.
L. X. Tang and B. T. Ooi, “Locating and isolating DC faults in multi-terminal DC systems,” IEEE Trans. Power Del., Vol. 22, No. 3, pp. 1877-1884, Jul. 2007. crossref(new window)

14.
J. Yang, J. E. Fletcher, and J. O. Reilly, “Short-circuit and ground fault analyses and location in VSC-based DC network cables,” IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3827-3837, Oct. 2012. crossref(new window)

15.
R. Marquardt, “Modular multilevel converter: An universal concept for HVDC-networks and extended DC-busapplications,” in Proc. Power Electron. Conf. Int., pp. 502-507, 2010.

16.
R. Marquardt, “Modular multilevel converter topologieswith DC-short circuit current limitation,” in Proc. IEEE 8th Int. Conf. Power Electron. ECCE Asia, pp. 1425-1431, 2011.

17.
M. M. C. Merlin, T. C. Green, P. D. Mitcheson, D. R. Trainer, R. Critchley, W. Crookes, and F. Hassan, “The alternate arm converter: a new hybrid multilevel converter with DC-fault blocking capability,” IEEE Trans. Power Del., Vol. 29, No. 1, pp. 310-317, Feb. 2014. crossref(new window)

18.
G. P. Adam, S. J. Finney, B. W.Williams, D. R. Trainer, C.D.M. Oates, and D. R. Critchley, “Network fault tolerant voltage-source-converters for high-voltage applications,” in Proc. 9th Int. Conf. AC and DC Power Transmission, pp. 1-5, 2010.

19.
Y. Xue, Z. Xu, and Q. Tu, “Modulation and control of a new hybrid cascaded multilevel converter with DC blocking capability,” IEEE Trans. Power Del., Vol. 27, No. 4, pp. 2227-2237, Oct. 2012. crossref(new window)

20.
X. Li, W. Liu, Q. Song, H. Rao, and S. Xu, “An enhanced MMC topology with DC Fault ride-through capability,” IEEE Industrial Electronics Society IECON, pp. 6182-6188, 2013.

21.
G. Tang, Z. Xu, and Y. Xue, “A LCC-MMC hybrid HVDC transmission system,” Transactions of China Electrotechnical Society, Vol. 28, No. 10, pp. 301-310, Oct. 2013.

22.
S. Bernal-Perez, S. Ano-Villalba, R. Blasco-Gimenez, and J. Rodriguez-D'Derlee. “Efficiency and fault ride-through performance of a diode-rectifier- and VSC-inverter-based HVDC link for offshore wind farms,” IEEE Trans. Ind. Electron., Vol. 60, No. 6, pp. 2401-2409, Jun. 2013. crossref(new window)

23.
B. Qahraman and A. M. Gole, “A VSC based series hybrid converter for HVDC transmission,” Electrical and Computer Engineering, pp. 458-461, May 2005.

24.
T. H. Nguyen, D.-C. Lee, and C.-K. Kim, “A series-connected topology of a diode rectifier and a voltage-source converter for an HVDC transmission system,” IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 1579-1584, Apr. 2014. crossref(new window)

25.
W. Lin, J. Wen, S. Wang, M. Yao, N. Li, and S. Cheng, "A kind of converters suitable for large-scale integration of wind power directly through HVDC," in Proc. the CSEE, Vol. 34, No. 13, pp. 2022-2030, 2014.

26.
M. Guan and Z. Xu, “Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions,” IEEE Trans. Power Electron., Vol. 27, No. 12, pp. 4858-4867, Dec. 2013. crossref(new window)

27.
L. Tan, Z. Chengyong, X. Jie, C. Xinhong, P. Hui, L. Change, “Start-up scheme for HVDC system based on modular multilevel converter,” IET Renewable Power Generation Conference, pp. 1-4, 2013.

28.
C. Li, P. Zhan, J. Wen, M. Yao, N. Li, and W.-J. Lee, “Offshore wind farm integration and frequency support control utilizing hybrid multi-terminal HVDC transmission,” IEEE Trans. Ind. Appl., Vol. 50, No. 4, pp. 2788-2797, Jul./Aug. 2014. crossref(new window)

29.
M. Szechtman, T. Wess, and C. V. Thio, “A benchmark model for HVDC system studies,” 1991 IET International Conference on AC and DC Power Transmission, pp. 374-378, 1991.

30.
E. Rahimi, A. M. Gole, J. B. Davies, I. T. Fernandot, and K. L. Kent, “Commutation failure in single- and multi-infeed HVDC systems,” in Proc. 2006 IEE International Conference on AC and DC Power Transmission, pp. 182-186, 2006.