Analysis and Implementation of a DC-DC Converter for Hybrid Power Supplies Systems

- Journal title : Journal of Power Electronics
- Volume 15, Issue 6, 2015, pp.1438-1445
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2015.15.6.1438

Title & Authors

Analysis and Implementation of a DC-DC Converter for Hybrid Power Supplies Systems

Yang, Lung-Sheng; Lin, Chia-Ching;

Yang, Lung-Sheng; Lin, Chia-Ching;

Abstract

A new DC-DC power converter is researched for renewable energy and battery hybrid power supplies systems in this paper. At the charging mode, a renewable energy source provides energy to charge a battery via the proposed converter. The operating principle of the proposed converter is the same as the conventional DC-DC buck converter. At the discharging mode, the battery releases its energy to the DC bus via the proposed converter. The proposed converter is a non-isolated high step-up DC-DC converter. The coupled-inductor technique is used to achieve a high step-up voltage gain by adjusting the turns ratio. Moreover, the leakage-inductor energies of the primary and secondary windings can be recycled. Thus, the conversion efficiency can be improved. Therefore, only one power converter is utilized at the charging or discharging modes. Finally, a prototype circuit is implemented to verify the performance of the proposed converter.

Keywords

High step-up converter;Hybrid power supplies system;Renewable energy;

Language

English

References

1.

J. T. Bialasiewicz, “Renewable energy systems with photovoltaic power generators: operation and modeling,” IEEE Trans. Ind. Electron., Vol. 55, No. 7, pp. 2752-2758, Jul. 2008.

2.

J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, M. A. M. Prats, J. I. Leon, and N. M. Alfonso, ”Power-electronic systems for the grid integration of renewable energy sources: a survey,” IEEE Trans. Ind. Electron., Vol. 53, No. 4, pp. 1002-1016, Aug. 2006.

3.

S. K. Kwon and K. F. A. Sayed, “Boost-Half bridge single power stage PWM DC-DC converter for PEM-fuel cell stacks,” Journal of Power Electronics, Vol. 8, No. 3, pp. 239-247, Jul. 2008.

4.

F. Nejabatkhah, S. Danyali, S. H. Hosseini, M. Sabahi, and S. M. Niapour, “Modeling and control of a new three-input DC-DC boost converter for hybrid PV/FC/battery power system,” IEEE Trans. on Power Electron., Vol. 27, No. 5, pp. 2309-2324, May 2012.

5.

T. Ahmedy, K. Nishida, and M. Nakaoka, “Wind power grid integration of an IPMSG using a diode rectifier and a simple MPPT control for grid-side inverters,” Journal of Power Electronics, Vol. 10, No. 5, pp. 548-554, Sep. 2010.

6.

Y. L. Juan, “An integrated-controlled AC/DC interface for microscale wind power generation systems,” IEEE Trans. Power Electron., Vol. 26, No. 5, pp. 1377-1384, May 2011.

7.

C. Xia, Q. Geng, X. Gu, T. Shi, and Z. Song, “Input-output feedback linearization and speed control of a surface permanent-magnet synchronous wind generator with the boost-chopper converter,” IEEE Trans. Ind. Electron., Vol. 59, No. 9, pp. 3489-3500, Sep. 2012.

8.

Y. M. Chen, A. Q. Huang, and X. Yu, “A high step-up three-port DC-DC converter for stand-alone PV/battery power systems,” IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5049-5062, Nov. 2013.

9.

J. H. Lee, T. J. Liang, and J. F. Chen, “Isolated coupled inductor integrated DC-DC converter with non-dissipative snubber for solar energy applications,” IEEE Trans. Ind. Electron., Vol. 61, No. 7, pp. 3337-3348, Jul. 2014.

10.

H. M. Ryu, “Highly efficient AC-DC converter for small wind power generators,” Journal of Power Electronics, Vol. 11, No. 2, pp. 188-193, Mar. 2011.

11.

Z. Liao and X. Ruan, “A novel power management control strategy for stand-alone photovoltaic power system,” IEEE International Power Electronics and Motion Control Conference, pp. 445-449, 2009.

12.

S. J. Jang, T. W. Lee, W. C. Lee, and C. Y. Won, “Bi-directional DC-DC converter for fuel cell generation system,” IEEE Power Electronics Specialists Conference, pp. 4722-4728, 2004.

13.

K. Jin, X. Ruan, M. Yang, and M. Xu, “A hybrid fuel cell power system,” IEEE Trans. Ind. Electron., Vol. 56, No. 4, pp. 1212-1222, Apr. 2009.

14.

D. K. Choi, B. K. Lee, S. W. Choi, C. Y. Won, and D. W. Yoo, “A novel power conversion circuit for cost-effective battery-fuel cell hybrid systems,” Journal of Power Sources, Vol. 152, pp. 245-255, Dec. 2005.

15.

W. S. Liu, J. F. Chen, T. J. Liang, and R. L. Lin, “Multicascoded sources for a high-efficiency fuel-cell hybrid power system in high-voltage application,” IEEE Trans. Power Electron., Vol. 26, No. 3, pp. 931-942, Mar. 2011.

16.

W. Li, H. Wu, H. Yu, and X. He, “Isolated winding-coupled bidirectional ZVS converter with PWM plus phase-shift (PPS) control strategy,” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3560-3570, Dec. 2011.

17.

A. S. Samosir and A. H. M. Yatim, “Implementation of dynamic evolution control of bidirectional DC-DC converter for interfacing ultracapacitor energy storage to fuel-cell system,” IEEE Trans. Ind. Electron., Vol. 57, No. 10, pp. 3468-3473, Oct. 2010.

18.

C. Sreekumar and V. Agarwal, “Hybrid control approach for the output voltage regulation in buck type DC-DC converter,” IET Electr. Power Appl., Vol. 1, No. 6, pp. 897-906, Nov. 2007.