JOURNAL BROWSE
Search
Advanced SearchSearch Tips
High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 15, Issue 6,  2015, pp.1468-1479
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2015.15.6.1468
 Title & Authors
High Efficiency High-Step-up Single-ended DC-DC Converter with Small Output Voltage Ripple
Kim, Do-Hyun; Kim, Hyun-Woo; Park, Joung-Hu; Jeon, Hee-Jong;
  PDF(new window)
 Abstract
Renewable energy resources such as wind and photovoltaic power generation systems demand a high step-up DC-DC converters to convert the low voltage to commercial grid voltage. However, the high step-up converter using a transformer has limitations of high voltage stresses of switches and diodes when the transformer winding ratio increases. Accordingly, conventional studies have been applied to series-connect multioutput converters such as forward-flyback and switched-capacitor flyback to reduce the transformer winding ratio. This paper proposes new single-ended converter topologies of an isolation type and a non-isolation type to improve power efficiency, cost-effectiveness, and output ripple. The first proposal is an isolation-type charge-pump switched-capacitor flyback converter that includes an extreme-ratio isolation switched-capacitor cell with a chargepump circuit. It reduces the transformer winding number and the output ripple, and further improves power efficiency without any cost increase. The next proposal is a non-isolation charge-pump switched-capacitor-flyback tapped-inductor boost converter, which adds a charge-pump-connected flyback circuit to the conventional switched-capacitor boost converter to improve the power efficiency and to reduce the efficiency degradation from the input variation. In this paper, the operation principle of the proposed scheme is presented with the experimental results of the 100 W DC-DC converter for verification.
 Keywords
High step-up;Isolated switched-capacitor cell;Output ripple;Single ended;Tapped inductor;
 Language
English
 Cited by
 References
1.
D. Meneses, F. Blaabjerg, O. García, and J. A. Cobos “Review and comparison of step-up transformerless topologies for photovoltaic AC-module application,” IEEE Trans. Power Electron., Vol. 28, No. 6, pp. 2649-2663, Jun. 2013. crossref(new window)

2.
J.-H. Park and B.-H. Cho, “Nonisolation soft-switching buck converter with tapped-inductor for wide-input extreme step-down applications,” IEEE Trans. Circuits and Syst., Vol. 54, No. 8, pp. 1809-1818, Aug. 2007. crossref(new window)

3.
Y.-P. Hsieh and J.-F. Chen, and T.-J. Liang, “Novel high step-up DC-DC converter with coupled-inductor and switched-capacitor techniques for a sustainable energy system,” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3481-3490, Dec. 2011. crossref(new window)

4.
F. H. Dupont, C. Rech, and R. Gules, “Reduced-order model and control approach for the boost converter with a voltage multiplier cell,” IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3395-3404, Jul. 2013. crossref(new window)

5.
R. N. A. L. Silva, G. A. L. Henn, P. P. Praça, R. A. da Câmara, L. H. S. C. Barreto, D. S. Oliveira Jr., “PID digital control applied to a high voltage gain converter with softswitching cells,” Industrial Electronics (ISIE), 2010 IEEE International Symposium on, pp. 992-997, 2010.

6.
I. Laird and D. D.-C. Lu, “High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator,” IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 740-741, Jul. 2013. crossref(new window)

7.
S. Lee, P. Kim, and S. Choi, “High step-up soft-switched converters using voltage multiplier cells,” IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3379-3387, Jul. 2013. crossref(new window)

8.
M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, “Voltage multiplier cells applied to non-isolated DC–DC converters,” IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 871-887, Mar. 2008. crossref(new window)

9.
K.-C. Tseng, C.-C. Huang, and W.-Y. Shih, “A high step-up converter with a voltage multiplier module for a photovoltaic system,” IEEE Trans. Power Electron., Vol. 28, No. 6, pp. 3047-3057, Jun. 2013. crossref(new window)

10.
K. Zou, M. J. Scott, and J. wang “A switched-capacitor voltage tripler with automatic interleaving capability,” IEEE Trans. Power Electron., Vol. 27, No. 6, pp. 2857-2868, Jun. 2012. crossref(new window)

11.
P K. Peter and V. Agarwel, “Analysis and design of a ground isolated switched capacitor DC-DC converter,” Industrial Electronics (ISIE), 2010 IEEE International Symposium on, pp. 632-637, 2010.

12.
S. Lee, P. Kim, and S. Choi, “High step-up soft-switched converters using voltage multiplier cells,” IEEE Trans. Power Electron, Vol. 28, No. 7, pp. 3379-3387, Jul. 2013. crossref(new window)

13.
M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, “Voltage multiplier cells applied to non-isolated DC–DC converters,” IEEE Trans. Power Electron, Vol. 23, No. 2, pp. 871-887, Mar. 2008. crossref(new window)

14.
K. C. Tseng, C. C. Huang, and W. Y. Shih, “A high step-up converter with a voltage multiplier module for a photovoltaic system,” IEEE Trans. Power Electron, Vol. 28, No. 6, pp. 3047-3057, Jun. 2013. crossref(new window)

15.
H. W. Seong, H. S. Kim, and K. B. Park, “High step-up DC-DC converters using zero-voltage switching boost integration technique and light-load frequency modulation control,” IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1383-1400, Mar. 2012. crossref(new window)

16.
J. W. Ahn and D. H. Lee, “Performance of passive boost switched reluctance converter for single-phase switched reluctance motor,” Journal of Electrical Engineering & Technology, Vol. 6, No. 4, pp. 505-512, Jul. 2011. crossref(new window)

17.
B. Gu, J. Dominic, J.-S. Lai, Z. Zhao, and C. Liu, “High boost ratio hybrid transformer DC–DC converter for photovoltaic module applications,” IEEE Trans. Power Electron, Vol. 28, No. 4, pp. 2048-2058, Apr. 2013. crossref(new window)

18.
Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc– dc converters,” IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65-73, Jan. 2003. crossref(new window)

19.
K. C. Tseng and T. J. Liang, "Novel high-efficiency step-up converter," Proc. Inst. Elect. Eng.-Elect. Power Appl., Vol. 151, No. 2, pp. 182-190, Mar. 2004.

20.
T. J. Liang and K. C. Tseng, "Analysis of integrated boostflyback step-up converter," Proc. Inst. Elect. Eng.-Electr. Power Appl., Vol. 152, No. 2, pp. 217-225, Mar. 2005.

21.
R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1025-1035, Sep. 2005. crossref(new window)

22.
D.-H. Kim, J.-H. Jang, J.-H. Park, and J.-W. Kim, “Singleended high-efficiency step-up converter using the isolated switched-capacitor cell,” Journal of Power Electronics, Vol. 13, No. 5, pp. 766-778, Sep. 2013. crossref(new window)

23.
D.-H. Kim, S. Moon, C.-I. Kim, and J.-H. Park, "High efficiency step-down flyback converter using coaxial cable transformer," Power Electronics and Motion Control Conference (IPEMC), Vol. 3, pp. 1974-1984, 2012.

24.
J.-H. Lee, J.-H. Park, and J. H. Jeon, “Series-connected forward-flyback converter for high step-up power conversion,” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3629-3641, Dec. 2011. crossref(new window)

25.
L. Nousiainen, J. Puukko, A. Mäki, T. Messo, J. Huusari, J. Jokipii, J.Viinamäki, D. T. Lobera, S. Valkealahti, and T. Suntio, “PV generator as an input source for power electronic converters,” IEEE Trans. Power Electron., Vol 28, No. 6, pp. 3028-3038, Jun. 2013. crossref(new window)

26.
D.-H. Kim, S. Moon, C.-I. Kim, and J.-H. Park, “High efficiency step-down flyback converter using coaxial cable coupled-inductor,” Journal of Power Electronics, Vol. 13, No. 2, pp. 214-222, Mar. 2013. crossref(new window)

27.
D.-H. Kim, J.-H. Jang, and J.-H. Park, "Charge-pumped and switched-capacitor flyback series-connected with tapinductor boost converter," 2013 IEEE 10th International Conference on Power Electronics and Drive Systerms (PEDS), Vol.2, pp. 619-621, 2013.

28.
S.-J. Park, J.-H. Shin, J.-H. Park, and H.-J. Jeon, “Dynamic analysis and controller design for standalone operation of photovoltaic power conditioners with energy storage,” Journal of Electrical Engineering & Technology, Vol. 9, No. 6, pp. 2004-2012, Nov. 2014. crossref(new window)

29.
M. S. Manoharan, A. Ahmed, and J.-H. Park, “Peak-valley current mode controlled H-bridge inverter with digital slope compensation for cycle-by-cycle current regulation,” Journal of Electrical Engineering & Technology, To be published.

30.
H. W. Kim, Y.-T. Jeon, J.-H. Park, and H.-J. Jeon, “Bidirectional tapped-inductor boost-flyback converter,” Transactions of Korean Institute of Power Electronics(KIPE), Vol. 20, No. 5, pp. 395-401, Oct. 2015. crossref(new window)

31.
H.-J. Lee, J.-H. Shin, and J.-H. Park, “Series-connected Power Conversion System Integrating a Photovoltaic Power Conditioner with a Charge-balancing Circuit,” Transactions of Korean Institute of Power Electronics(KIPE), Vol. 20, No. 5, pp. 389-394, Oct. 2015. crossref(new window)