Advanced SearchSearch Tips
A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 15, Issue 6,  2015, pp.1547-1558
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2015.15.6.1547
 Title & Authors
A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter
Wang, Shuang; Zhu, Wenju; Shi, Jian; Ji, Hua; Huang, Surong;
  PDF(new window)
A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.
Predictive functional control;Kalman filter;Disturbance observer;Torque compensation;Permanent magnet synchronous motor;
 Cited by
Model Parameter Correction Algorithm for Predictive Current Control of SMPMSM, Journal of Power Electronics, 2016, 16, 3, 1004  crossref(new windwow)
C. Line, C. Manzie, and M. C. Good, “Electromechanical brake modeling and control: From PI to MPC,” IEEE Trans. Control Syst. Technol, Vol. 16, No. 3, pp.446-457, May 2008. crossref(new window)

X. D. Li and S. H. Li. “Speed control for a PMSM servo system using model reference adaptive control and an extended state observer,” Journal of Power Electronics, Vol. 14, No. 3, pp. 549-563, May 2014. crossref(new window)

R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., Vol. 59, No. 7, pp. 2849-2858, Jul. 2012. crossref(new window)

J. W. Jung, H. H. Choi, and T.-H. Kim “Fuzzy PD speed controller for permanent magnet synchronous motors,” Journal of Power Electronics, Vol.11, No. 6, pp. 819-823, Nov. 2011. crossref(new window)

F. J. Lin, T. S. Lee, and C.-H. Lin, “Robust H∞ controller design with recurrent neural network for linear synchronous motor drive,” IEEE Trans. Ind. Electron., Vol. 50, No. 3, pp. 456-470, Jun. 2003. crossref(new window)

N. Z. Jin, X. D. Wang, and X. G Wu, “Current sliding mode control with a load sliding mode observer for permanent magnet synchronous machines,” Journal of Power Electronics, Vol. 14, No. 1, pp. 105-114, Jan. 2014. crossref(new window)

T. Satoh, K. Kaneko, and N. Saito, “Performance improvement of predictive functional control: a disturbance observer approach,” IEEE 37th Annual Conference on Ind. Electronics Society, pp. 669-674, 2011.

M. Preindl and E. Schaltz, “Sensorless model predictive direct current control using novel second-order PLL observer for PMSM drive systems,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4087-4095, Sep. 2011. crossref(new window)

J. S. Ko and J. S. Choi, “Maximum torque control of an IPMSM drive using an adaptive learning fuzzy-neural network,” Journal of Power Electronics, Vol. 12, No. 3, pp. 819-823, May 2012. crossref(new window)

F. M. Fayez, “Robust recurrent wavelet interval type-2 fuzzy-neural-network control for DSP-based PMSM servo drive systems,” Journal of Power Electronics, Vol. 13, No. 1, pp. 139-160, Jan. 2013. crossref(new window)

F. Morel, X. F. ShiLin, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent magnet synchronous machine drive,” IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2715-2728, Jul. 2009. crossref(new window)

R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, “Robust cascaded nonlinear predictive control of a PMSM with anti-windup compensator,” IEEE Trans. Ind. Electron., Vol. 59, No. 8, pp. 3078-3088, Aug. 2012. crossref(new window)

S. Chai, L. P. Wang, and E. Rogers, “A cascade MPC control structure for a PMSM with speed ripple minimization,” IEEE Trans. Ind. Electron., Vol. 60, No. 8, pp. 2978-2987, Aug. 2013. crossref(new window)

J. Richalet, “Industrial applications of model based predictive control,” Automatica, Vol. 29, No. 5, pp. 1251-1274, Sep. 1993. crossref(new window)

M. Preindl and S. Bolognani, "Model predictive direct speed control with finite control set of PMSM drive systems," IEEE Trans. Power. Electron., Vol. 28, No. 2, pp. 1007- 1015, Feb. 2013. crossref(new window)

H. X. Liu and S. H. Li. “Speed control for PMSM servo system using predictive functional control and extended state observe,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1171-1183, Feb. 2012. crossref(new window)

W. H. Ali, M. Gowda, P. Cofie, and J. Fuller, “Design of a speed controller using extended Kalman filter for PMSM,” IEEE 57th International Midwest Symposium on Circuits and Systems, pp. 1101-1104, 2014.

Z. G. Yin, R. F. Zhang, Z. Yanru, and C. Yu, “Speed and flux estimation of permanent magnet synchronous motor for sensorless vector control based on robust extended Kalman filter,” IEEE International Symposium on Ind. Electronics, pp. 748-751, 2012.

N. K. Quang, N. T. Hieu, and Q. P. Ha, “FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters,” IEEE Trans. Ind. Electron., Vol. 61, No. 12, pp. 6574-6582, Dec. 2014. crossref(new window)

Z. D. Zheng and Y. D. Li, “Load torque observer of permanent magnet synchronous motor,” Transactions of China Electrotechnical Society, Vol. 25, No. 2, pp. 30-36, Feb. 2010.

X. Xiao and C. M. Chen, “Reduction of torque ripple due to demagnetization in PMSM using current compensation,” IEEE Trans. Appl. superconduct., Vol. 20, No. 3, pp. 1068 -1071, Jun. 2010. crossref(new window)