JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 15, Issue 6,  2015, pp.1567-1576
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2015.15.6.1567
 Title & Authors
Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection
Wang, Gaolin; Wang, Ying; Ding, Li; Yang, Lei; Ni, Ronggang; Xu, Dianguo;
  PDF(new window)
 Abstract
Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.
 Keywords
Estimation error;Harmonic analysis;Inverter nonlinearities;Offline inductance identification;Permanent magnet synchronous motor;
 Language
English
 Cited by
 References
1.
Y. S. Jung and M. G. Kim, “Sliding mode observer for sensorless control of IPMSM,” Journal of Power Electronics, Vol. 9, No. 1, pp. 117-123, Jan. 2009.

2.
G. Wang, R. Yang, and D. Xu, “DSP-based control of sensorless IPMSM drives for wide-speed-range operation,” IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 720-727, Feb. 2013. crossref(new window)

3.
M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Ind. Electron., Vol. 60, No.2, pp. 739-748, Feb. 2013. crossref(new window)

4.
K. Liu, Z. Q. Zhu, Q. Zhang, and J. Zhang, “Influence of nonideal voltage measurement on parameter estimation in permanent- magnet synchronous machines,” IEEE Trans. Ind. Electron., Vol. 59, No.6, pp. 2438-2447, Jun. 2012. crossref(new window)

5.
Z. Chen, X. Deng, K. Huang, W. Zhen, and Lei Wang, “Sensorless control of wound rotor synchronous machines based on high-frequency signal injection into the stator windings,” Journal of Power Electronics, Vol. 13, No. 4, pp. 669-677, Jul. 2013. crossref(new window)

6.
A. Boglietti, A. Cavagnino, and M. Lazzari, “Experimental high- frequency parameter identification of AC electrical motors,” IEEE Trans. Ind. Appl., Vol. 43, No.1, pp. 23-29, Jan./Feb. 2007. crossref(new window)

7.
F. Cupertino, G. Pellegrino, P. Giangrande, and L. Salvatore, “Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects,” IEEE Trans. Ind. Appl., Vol. 47, No. 3, pp. 1371-1379, May/Jun. 2011. crossref(new window)

8.
R. Dutta and M. F. Rahman, “A comparative analysis of two test methods of measuring d- and q-axes inductances of interior permanent- magnet machine,” IEEE Trans. Magn., Vol. 42, No. 11, pp. 3712-3718, Nov. 2006. crossref(new window)

9.
K. M. Rahman and S. Hiti, “Identification of machine parameters of a synchronous motor,” IEEE Trans. Ind. Appl., Vol. 41, No. 2, pp. 557-565, Mar./Apr. 2005. crossref(new window)

10.
M. A. Arjona, M. Cisneros-González, and C. Hernández, “Parameter estimation of a synchronous generator using a sine cardinal perturbation and mixed stochastic-deterministic algorithms,” IEEE Trans. Ind. Electron., Vol. 57, No. 1, pp. 430-439, Jan. 2010. crossref(new window)

11.
Y. S. Je and J. Y. Lee, “Parameter identification of an induction motor drive with magnetic saturation for electric vehicle,” Journal of Power Electronics, Vol.11, No. 4, pp. 418-423, Jul. 2011. crossref(new window)

12.
J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarrón, and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal- injection-based sensorless control methods,” IEEE Trans. Ind. Appl., Vol. 41, No. 2, pp. 618-626, Mar./Apr. 2005. crossref(new window)

13.
S. A. Odhano, P. Giangrande, R. I. Bojoi, and Chris Gerada, “Self-commissioning of Interior Permanent-Magnet Synchronous Motor Drives With High-Frequency Current Injection,” IEEE Trans. Ind. Electron., Vol. 50, No. 50, pp. 3295-3303, Sep. 2014.

14.
Y. Park and S. K. Sul, “A novel method utilizing trapezoidal voltage to compensate for inverter nonlinearity,” IEEE Trans. Power Electron., Vol. 27, No. 12, pp. 4837-4846, Jun. 2012. crossref(new window)