Advanced SearchSearch Tips
Backstepping Control of a Buck-Boost Converter in an Experimental PV-System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 15, Issue 6,  2015, pp.1584-1592
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2015.15.6.1584
 Title & Authors
Backstepping Control of a Buck-Boost Converter in an Experimental PV-System
Vazquez, Jesus R.; Martin, Aranzazu D.;
  PDF(new window)
This paper presents a nonlinear method to control a DC-DC converter and track the Maximum Power Point (MPP) of a Photovoltaic (PV) system. A backstepping controller is proposed to regulate the voltage at the input of a buck-boost converter by means of Lyapunov functions. To make the control initially faster and avoid local maximum, a regression plane is used to estimate the reference voltages that must be obtained to achieve the MPP and guarantee the maximum power extraction, modifying the conventional Perturb and Observe (P&O) method. An experimental platform has been designed to verify the validity and performance of the proposed control method. In this platform, a buck-boost converter has been built to extract the maximum power of commercial solar modules under different environmental conditions.
Backstepping;Buck-Boost Converter;Experimental;Maximum Power Point;Photovoltaic;
 Cited by
Y. Tian, B. Xia, Z. Xu, and W. Sun, “Modified asymmetrical variable step size incremental conductance maximum power point tracking method for photovoltaic systems,” Journal of Power Electronics, Vol. 14, No. 1, pp. 156-164, Jan. 2014. crossref(new window)

T. F. Wu and Y. K. Chen, “Modeling PWM DC/DC converters out of basic converter units,” IEEE Trans. Power Electron., Vol. 13, No. 5, pp. 870-881, Sep. 1998. crossref(new window)

J. Enrique, E. Durán, M. de-Cardona, and J. Andújar, “Theoretical assessment of the 18 maximum power point tracking efficiency of photovoltaic facilities with different 19 converter topologies,” Solar Energy, Vol. 81, No. 1, pp. 31-38, Jan. 2007. crossref(new window)

T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. on Energy Conversion, Vol. 22, No. 2, pp. 439-449, Jun. 2007. crossref(new window)

S. B. Kjaer, “Evaluation of the “hill climbing” and the “incremental conductance” maximum power point trackers for photovoltaic power systems,” IEEE Trans. Energy Convers., Vol. 27, No. 4, pp. 922-929, Dec. 2012. crossref(new window)

M. A. Elgendy; B. Zahawi; D. J. Atkinson, “Evaluation of Perturbe and Observe MPPT Algorithm Implementation Techniques,” in PEMD, pp. 1-6, 2012.

M. Momayyezan, H. Iman-Eini, “Developed MPPT Algorithm for Photovoltaic Systems without a Voltage Sensor,” Journal of Power Electronics, Vol. 13, No. 6, pp. 1042-1050, Nov. 2013. crossref(new window)

M. I. Arteaga Orozco, J. R. Vázquez, P. Salmerón, “MPP Tracker of a PV System using sliding mode control with minimum transient response,” Int. Review on Modelling and Simulations, Vol. 3, No. 6, pp. 1468-1475, Dec. 2010.

T. Esram, J. W. Kimball, P. T. Krein, P. L. Chapman, P. Midya, “Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control,” IEEE Trans. Power Electron., Vol. 21, No. 5, pp. 1282-1291, Sept. 2006. crossref(new window)

J. R. Vazquez, A. D. Martin, and R. S. Herrera, “Neuro-fuzzy control of a grid-connected photovoltaic system with power quality,” in EUROCON, pp. 850-856, 2013.

R. Ramaprabha, B. L. Mathur, and M. Sharanya, “Solar array modeling and simulation of MPPT using neural network,” in Int. Conf. on Control, Automation, Communication and Energy Conservation, pp. 1-5, 2009.

T. L. Kottas, Y. S. Boutalis, and A. D. Karlis, “New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks,” IEEE Trans. Energy Convers., Vol. 21, No. 3, pp. 793-803, Sep. 2006. crossref(new window)

Y. Zhang, B. Fidan, and P. A. Ioannou, “Backstepping control of linear time-varying systems with known and unknown parameters,” IEEE Trans. Autom. Control, Vol. 48, No. 11, pp. 1908-1925, Nov. 2003. crossref(new window)

Z. Pan, K. Ezal, A. J. Krener, and P. V. Kokotovic, “Backstepping design with local optimality matching,” IEEE Trans. Autom. Control, Vol. 46, No. 7, pp. 1014-1027, Jul. 2001. crossref(new window)

M. Sokolov and D. Shmilovitz, “A modified MPPT scheme for accelerated convergence,” IEEE Trans. Energy Convers., Vol. 23, No. 4, pp. 1105-1107, Dec. 2008. crossref(new window)

J. Zeng, W. Qiao, and L. Qu, “A single-switch isolated DC-DC converter for photovoltaic systems,” in ECCE, pp. 3446-3452, 2012.

P. Pichlik and J. Zdenek, “Converter regulation of stand-alone photovoltaic system at low solar radiation,” in AE, pp. 207-210, 2012.

A. Daoud and A. Midoun, “Simulation and experimental study of maximum power point tracker based on a DC/DC buck converter,” Int. Review of Electrical Engineering. Vol. 5, No. 2, pp. 514-520, Apr. 2010.

R. Ortega, A. Lorai, P. J. Niklasson and H. Sira-Ramirez, “Passivity-based Control of Euler-Lagrange Systems,” Communications and Control Engineering. pp. 168-171, Sept. 1998.