Modulation, Harmonic Analysis, and Balancing Control for a New Modular Multilevel Converter

- Journal title : Journal of Power Electronics
- Volume 16, Issue 1, 2016, pp.163-172
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2016.16.1.163

Title & Authors

Modulation, Harmonic Analysis, and Balancing Control for a New Modular Multilevel Converter

Li, Binbin; Zhang, Yi; Wang, Gaolin; Xu, Dianguo;

Li, Binbin; Zhang, Yi; Wang, Gaolin; Xu, Dianguo;

Abstract

The modular multilevel converter (MMC) has been receiving increased attentions in recent years. The new modular multilevel converter is a derivative topology from the traditional MMC in which the number of sub-modules (SMs) necessitated by each phase can be reduced by one. This paper presents a phase-shifted carrier pulse-width modulation (PSC-PWM) for the new MMC with an optimal phase-shifted angle to suppress the harmonics of the output voltage. Further, the harmonic features when the capacitor voltage of the middle SM is selected as two different values are also investigated. Moreover, in order to avoid introducing an unnecessary dc offset current at the ac terminals of the new MMC, a novel capacitor voltage balancing scheme is proposed by adjusting the amplitude of the reference signals rather than the offset. Finally, the validity and effectiveness of the proposed modulation and balancing schemes have been verified by experimental results based on a three-phase prototype of the new MMC.

Keywords

Modular multilevel converter (MMC);Phase-shifted carrier modulation;Voltage balancing;

Language

English

References

1.

L. G. Franquelo, J. Rodriguez, J. I. Leon, and S. Kouro, “The age of multilevel converters arrives,” IEEE Ind. Electron. Mag., Vol. 2, No. 2, pp. 28-39, Jun. 2008.

2.

J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, and E. Galvan, “Power-electronic systems for the grid integration of renewable energy sources: a survey,” IEEE Trans. Ind. Electron., Vol. 53, No. 4, pp. 1002-1016, Jun. 2006.

3.

J. Rodriguez, S. Bernet, B. Wu, J. O. Pontt, and S. Kouro, “Multilevel voltage-source-converter topologies for industrial medium-voltage drives,” IEEE Trans. Ind. Electron., Vol. 54, No. 6, pp. 2930-2945, Dec. 2007.

4.

S. Kouro, M. Malonowski, K. Gopakumar, and J. Pou, “Recent advances and industrial applications of multilevel converters,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2553-2580, Aug. 2010.

5.

F. Z. Peng, “A generalized multilevel inverter topology with self voltage balancing,” IEEE Trans. Ind. Appl., Vol. 37, No. 2, pp. 611-618, Mar./Apr. 2001.

6.

A. Chen, L. Hu, L. Chen, Y. Deng, and X. He, “A multilevel converter topology with fault-tolerant ability,” IEEE Trans. Power Electron., Vol. 20, No. 2, pp. 405-415, Mar. 2005.

7.

S. B. Monge and J. N. Apruzzese, “A multilevel active-clamped converter topology—operating principle,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 3868-3878, Sep. 2011.

8.

J. N. Apruzzese, S. B. Monge, J. Bordonau, S. Alepuz, and A. C. Prado, “Analysis of the fault-tolerance capacity of the multilevel active-clamped converter,” IEEE Trans. Ind. Electron., Vol. 60, No. 11, pp. 4773-4783, Nov. 2013.

9.

K Wang, Y. Li, Z. Zheng, and L. Xu, "Voltage fluctuation suppression method of floating capacitors in a new modular multilevel converter," Energy Conversion Congress and Exposition (ECCE), IEEE, pp. 2072-2078, Sep. 2011.

10.

K. Wang, Y. Li, Z. Zheng, and L. Xu, “Voltage balancing and fluctuation-suppression methods of floating capacitors in a new modular multilevel converter,” IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 1943-1954, May 2013.

11.

R. Marquardt and A. Lesnicar, "A new modular voltage source inverter topology," in Conf. Rec. EPE, Toulouse, France, pp. 1-10, 2003.

12.

A. Lesnicar and R. Marquardt, "An innovative modular multilevel converter topology suitable for a wide power range," Power Tech Conf. Proc. 2003 IEEE Bologna, Vol.3, No., pp. 1-6, Jun. 2003.

13.

S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, “Operation, control, and applications of the modular multilevel converter: a review,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 37–53, Jan. 2015.

14.

G. Konstantinou, M. Ciobotaru, and V. Agelidis, “Selective harmonic elimination pulse-width modulation of modular multilevel converters,” IET Power Electron., Vol. 6, No. 1, pp. 96-107, Jan. 2013.

15.

B. Li, R. Yang, D. Xu, G. Wang, W. Wang, and D. Xu, “Analysis of the phase-shifted carried modulation for modular multilevel converters,” IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 297-310, Jan. 2015.

16.

Z. Li, P. Wang, H. Zhu, Z. Chu, and Y. Li, “An improved pulse width modulation method for chopper-cell-based modular multilevel converters,” IEEE Trans. Power Electron., Vol. 27, No. 8, pp. 3472-3481, Aug. 2012.

17.

M. Guan and Z. Xu, “Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions,” IEEE Trans. Power Electron., Vol. 2, No. 12, pp. 4858-4867, Dec. 2012.

18.

G. Bergna, E. Berne, P. Egrot, P. Lefranc, A. Arzande, J. Vannier, and M. Molinas, “An energy-based controller for HVDC modular multilevel converter in decoupled double synchronous reference frame for voltage oscillations reduction,” IEEE Trans. Ind. Electron., Vol. 60, No. 6, pp. 2360-2371, Jun. 2013.

19.

M. Hagiwara and H. Akagi, “Control and experiment of pulsewidth-modulated modular multilevel converters,” IEEE Trans. Power Electron., Vol. 24, No. 7, pp. 1737-1746, Jul. 2009.

20.

K. Shen, J. Wang, D. Zhao, M. Ban, Y. Ji, and X. Cai, “Investigation of capacitor voltage regulation in modular multilevel converters with staircase modulation,” Journal of Power Electronics, Vol. 14, No. 2, pp. 282-291, Mar. 2014.

21.

A. Antonopoulos, L. Angquist, and and H. P. Nee, "On dynamics and voltage control of the modular multilevel converter," in Proc. 13th Eur. Conf. Power Electron. Appl. (EPE), Barcelona, Spain, pp. 1-10, Sep. 2009.

22.

Holmes D G and Lipo T A. Pulse width modulation for power converters: principles and practice. John Wiley & Sons, 2003.