JOURNAL BROWSE
Search
Advanced SearchSearch Tips
High-Performance Control of Three-Phase Four-Wire DVR Systems using Feedback Linearization
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 1,  2016, pp.351-361
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.1.351
 Title & Authors
High-Performance Control of Three-Phase Four-Wire DVR Systems using Feedback Linearization
Jeong, Seon-Yeong; Nguyen, Thanh Hai; Le, Quoc Anh; Lee, Dong-Choon;
  PDF(new window)
 Abstract
Power quality is a critical issue in distribution systems, where a dynamic voltage restorer (DVR) is commonly used to mitigate the voltage disturbances for loads. This paper deals with a nonlinear control for the three-phase four-wire (3P-4W) DVR under a grid voltage unbalance and nonlinear loads in the distribution system, where a novel control scheme based on the feedback linearization technique is proposed. Through feedback linearization, a nonlinear model of a DVR with a PWM voltage-source inverter (VSI) and LC filters is linearized. Then, the controller design of the linearized model is performed by applying the linear control theory, where the load voltages are kept constant by controlling the d-q-0 axis components of the DVR output voltages. To keep the load voltage unchanged, an in-phase compensation strategy is employed, where the load voltages are recovered to be the same as the previous voltage without a change in the magnitude. With this strategy, the performance of the DVR becomes faster and more stable even under unbalanced source voltages and nonlinear loads. The validity of the proposed control strategy has been verified by simulation and experimental results.
 Keywords
Dynamic voltage restorers;feedback linearization;SOGI-PLL;three-phase four-wire VSI;voltage unbalance;
 Language
English
 Cited by
 References
1.
Q. N. Trinh, H.-H. Lee, and T. W. Chun, “An enhanced harmonic voltage compensator for general loads in standalone distributed generation systems,” Journal of Power Electronics, Vol. 13, No. 6, pp. 1070-1079, Nov. 2013. crossref(new window)

2.
E. Babaei, M. F. Kangarlu, and M. Sabahi, “Mitigation of voltage disturbances using dynamic voltage restorer based on direct converters,” IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 2676-2683, Oct. 2010. crossref(new window)

3.
H. Xu, X. Ma, and D. Sun, “Reactive current assignment and control for DFIG based wind turbines during grid voltage sag and swell conditions,” Journal of Power Electronics, Vol. 15, No. 1, pp. 235-245, Jan. 2015. crossref(new window)

4.
V. Khadkikar and A. Chandra, “UPQC-S: a novel concept of simultaneous voltage sag/swell and load reactive power compensations utilizing series inverter of UPQC,” IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2414-2425, Sep. 2011. crossref(new window)

5.
C. Liu, K. Dai, K. Duan, and Y. Kang, “Application of a Ctype filter based LCFC output filter to shunt active power filters,” Journal of Power Electronics, Vol. 13, No. 6, pp. 1058-1069, Nov. 2013. crossref(new window)

6.
G. Mahendran, M. Sathikumar, S. Thiruvenkadam, and L. Lakshminarasimman, “Multi-objective unbalanced distribution network reconfiguration through hybrid heuristic algorithm,” Journal of Electric Engineering and Technology, Vol. 8, No. 2, pp. 215-222, Mar. 2013. crossref(new window)

7.
H. Kim and S.-K. Sul, “Compensation voltage control in dynamic voltage restorers by use of feed forward and state feedback scheme,” IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1169-1177, May 2005. crossref(new window)

8.
T. Jimichi, H. Fujita, and H. Akagi, “Design and experimentation of a dynamic voltage restorer capable of significantly reducing an energy-storage element,” IEEE Trans. Ind. Appl., Vol. 44, No. 3, pp. 817-825, May/Jun. 2008. crossref(new window)

9.
C. Meyer, R. W. De Doncker, Y. W. Li, and F. Blaabjerg, “Optimized control strategy for a medium-voltage DVRtheoretical investigations and experimental results,” IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2746-2754, Nov. 2008. crossref(new window)

10.
L.-Y. Yang, C.-L. Wang, J.-H. Liu, and C.-X. Jia, “A novel phase locked loop for grid-connected converters under nonideal grid conditions,” Journal of Power Electronics, Vol. 15, No. 1, pp. 216-226, Jan. 2015. crossref(new window)

11.
S. R. Naidu and D. A. Fernandes, “Dynamic voltage restorer based on a four-leg voltage-source converter,” IET Gener. Transm. Distrib., Vol. 3, No. 5, pp. 437-447, 2009. crossref(new window)

12.
S. B. Karanki, N. Geddada, M. K. Mishra, and B. K. Kumar, “A modified three-phase four-wire UPQC topology with reduced DC-link voltage rating,” IEEE Trans. Ind. Electron., Vol. 60, No. 9, pp. 3555-3566, Sep. 2013. crossref(new window)

13.
V. Khadkikar and A. Chandra, “A novel structure for threephase four-wire distribution system utilizing unified power quality conditioner (UPQC),” IEEE Trans. Ind. Appl., Vol. 45, No. 5, pp. 1897-1902, Sep./Nov. 2009. crossref(new window)

14.
S. Lee, Y. Chae, J. Cho, G. Choe, H. Mok, and D. Jang, "A new control strategy for instantaneous voltage compensator using 3-phase PWM inverter," in Proc. IEEE PESC'98, 1998, pp. 248-254.

15.
Q.-N. Trinh and H.-H. Lee, “Improvement of unified power quality conditioner performance with enhanced resonant control strategy,” IET Gener. Transm. Distrib., Vol. 8, No. 12, pp. 2114-2123, Dec. 2014. crossref(new window)

16.
D.-E. Kim and D.-C. Lee, “Feedback linearization control of three-phase UPS inverter system,” IEEE Trans. Ind. Electron., Vol. 57, No. 3, pp. 963-968, Mar. 2010. crossref(new window)

17.
N. Q. T. Vo and D.-C. Lee, “Advanced control of threephase four-wire inverters using feedback linearization under unbalanced and nonlinear load condition,” Transactions of Korean Institute of Power Electronics(KIPE), Vol. 18, No. 4, pp. 333-341, Aug. 2013. crossref(new window)

18.
S.-Y. Jeong, T. H. Nguyen, D.-C. Lee, and J.-M. Kim, "Nonlinear control of three-phase four-wire dynamic voltage restorers for distribution system," in Proc. IEEE IPEC, pp. 2406-2412, 2014.

19.
P. Rodriguez, A. Luna, R. S. M. Aguilar, I. E. Otadui, R. Teodorescu, and F. Blaabjerg, “A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions,” IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 99-112, Jan. 2012. crossref(new window)

20.
A. Luna, C. Citro, C. Gavriluta, J. Hermoso, I. Candela, and P. Rodriguez, "Advanced PLL structures for grid synchronization in distributed generation," in Proc. ICREPQ'12, pp. 1-10, 2012.

21.
J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ:Prentice-Hall, 1991, pp. 207-271.

22.
J.-I. Jang and D.-C. Lee, "High performance control of three-phase PWM converters under non-ideal source voltage," in Proc. IEEE ICIT, pp. 2791-2796, 2006.