Advanced SearchSearch Tips
Voltage Source Inverter Drive Using Error-compensated Pulse Width Modulation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 1,  2016, pp.388-397
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.1.388
 Title & Authors
Voltage Source Inverter Drive Using Error-compensated Pulse Width Modulation
Chen, Keng-Yuan; Hu, Jwu-Sheng; Lin, Jau-Nan;
  PDF(new window)
An error-compensated pulse width modulator (ECPWM) is proposed to improve the baseband harmonic performance and the switching loss of voltage source inverters (VSIs). Selecting between harmonic distortion and switching loss is a design tradeoff in the conventional space vector pulse width modulation. In this work, an accumulated difference in produced and desired phase voltages is considered to adjust the reference signal. This mechanism can compensate for the voltage error in the previous carrier period. With error compensation every half-carrier period, the proposed ECPWM allows one-half reduction in carrier frequency without scarifying baseband harmonic distortion. The proposed modulator is applied to a three-phase VSI with R-L load and a motor-speed-control system for experiments. The measured efficiency and operating temperature of switches confirm the effectiveness of the proposed scheme.
Digital signal;Motor drive;Pulse-width modulation (PWM);Space-vector PWM;Voltage-source inverter;
 Cited by
D.-W. Chung, J.-S. Kim, and S.-K. Sul, “Unified voltage modulation technique for real-time three-phase power conversion,” IEEE Trans. Ind. Appl., Vol. 34, No. 2, pp. 374-380, Mar./Apri. 1998. crossref(new window)

O. Dordevic, M. Jones, and E. Levi, “A comparison of carrier-based and space vector PWM techniques for three-level five-phase voltage source inverter,” IEEE Trans. Ind. Informat., Vol. 9, No 2, pp. 609-619, May 2013. crossref(new window)

A. Iqbal and S. Moinuddin, “Comprehensive relationship between carrier-based PWM and space vector PWM in a five-phase VSI,” IEEE Trans. Power Electron., Vol. 24, No. 10, pp. 2379-2390, Oct. 2009. crossref(new window)

J. Yuan, J. Pan, W. Fei, C. Cai, Y. Chen, and B. Chen, “An immune-algorithm-based space-vector PWM control strategy in a three-phase inverter,” IEEE Trans. Ind. Electron., Vol. 60, No. 5, pp. 2084-2093, May 2013. crossref(new window)

M. Narimani and G. Moschopoulos, “Three-phase multimodule VSIs using SHE-PWM to reduce zero-sequence circulating current,” IEEE Trans. Ind. Electron., Vol. 61, No. 4, pp. 1659-1668, Apr. 2014. crossref(new window)

K.-Y. Chen and J.-S. Hu, “A filtered SVPWM for multiphase voltage source inverters considering finite pulse-width resolution,” IEEE Trans. Power Electron., Vol. 27, No. 7, pp. 3107-3118, Jul. 2012. crossref(new window)

B. Zhang, K. Zhou, and D. Wang, “Multirate repetitive control for PWM DC/AC converters,” IEEE Trans. Ind. Electron., Vol. 61, No. 6, pp. 2883-2890, Jun. 2014. crossref(new window)

S. Mekhilef, M. N. A. Kadir, and Z. Salam, “Digital control of three phase three-stage hybrid multilevel inverter,” IEEE Trans. Ind. Informat., Vol. 9, No 2, pp. 719-727, May 2013. crossref(new window)

J. Shi and S. Li, “Analysis and compensation control of dead-time effect on space vector PWM,” Journal of Power Electronics, Vol. 15, No. 2, pp. 431-442, Mar. 2015. crossref(new window)

B.-R. Lin and Y.-B. Nian, “Analysis and implementation of a new three-level converter,” Journal of Power Electronics, Vol. 14, No. 3, pp. 478-487, May 2014. crossref(new window)

S. Srinivas and K. R. Sekhar, “Theoretical and experimental analysis for current in a dual-inverter-fed open-end winding induction motor drive with reduced switching PWM,” IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4318-4328, Oct. 2013. crossref(new window)

F. Wang, Z. Zhang, A. Davari, J. Rodríguez, and R. Kennel, “An experimental assessment offinite-state predictive torque control for electrical drives by considering different online-optimization methods,” Control Engineering Practice, Vol. 31, pp. 1-8, Oct. 2014. crossref(new window)

A. E. Fadili, F. Giri, A. E. Magri, R. Lajouad, and F. Z. Chaoui, “Adaptive control strategy with flux reference optimization for sensorless induction motors,” Control Engineering Practice, Vol. 26, pp. 91-106, May 2014. crossref(new window)

S. Du, J. Liu, and T. Liu, “A PDPWM based DC capacitor voltage control method for modular multilevel converters,” Journal of Power Electronics, Vol. 15, No. 3, pp. 660-669, May 2015. crossref(new window)

R. Nagarajan and M. Saravanan, “Performance analysis of a novel reduced switching cascaded multilevel inverter,” Journal of Power Electronics, Vol. 14, No. 1, pp. 48-60, Jan. 2014. crossref(new window)

A. R. Beig, S. Kanukollu, K. A. Hosani, and A. Dekka, “Space vector based synchronized three level discontinuous PWM for medium voltage high power VSI,” IEEE Trans. Ind. Electron., Vol. 61, No. 8, pp 3891-3901, Aug. 2014. crossref(new window)

S.-L. An, X.-D. Sun, Q. Zhang, Y.-R. Zhong, and B-Y. Ren, “Study on the novel generalized discontinuous SVPWM strategies for three-phase voltage source inverters,” IEEE Trans. Ind. Informat., Vol. 9, No 2, pp. 781-789, May 2013. crossref(new window)

J.-S. Hu, K.-Y. Chen, T.-Y. Shen, and C.-H. Tang, “Control of voltage source inverter using Multi-dimensional Feedback Quantization Modulator,” IEEE Trans. Ind. Electron., Vol. 58, No. 7, pp. 3027-3036, Jul. 2011. crossref(new window)

K.-Y. Chen, J.-S. Hu, C.-H. Tang, and T.-Y. Shen, “A novel switching strategy for FOC motor drive using multi-dimensional feedback quantization,” Control Engineering Practice, Vol. 20, No. 2, pp. 196-204, Feb. 2012. crossref(new window)

D. Zhao, V. S. S. P. K. Hari, G. Narayanan, and R. Ayyanar, “Space-vector-based hybrid pulsewidth modulation techniques for reduced harmonic distortion and switching loss,” IEEE Trans. Power Electron., Vol. 25, No. 3, pp. 760-774, Mar. 2010. crossref(new window)

L. Mathe, F. Lungeanu, D. Sera, P. O. Rasmussen, and J. K. Pedersen, “Spread spectrum modulation by using asymmetric-carrier random PWM,” IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3710-3718, Oct. 2012. crossref(new window)

A. T. Islier, A. Ersak, and G. Richards, "Harmonic minimization in a three-phase asymmetrical PWM rectifier," in Proc. 7th Mediterranean Electrotechnical conference, Vol. 2, pp. 829-832, Apr. 1994.

P. Sanjit and A. Aurasopon, “Asymmetrical PWM for harmonics reduction and power factor improvement in PWM AC choppers using bee colony optimization,” Journal of Power Electronics, Vol. 15, No. 1, pp. 227-234, Jan. 2015. crossref(new window)

A. M. Hava and E. Un, “A high-performance PWM algorithm for common-mode voltage reduction in three-phase voltage source inverters,” IEEE Trans. Power Electron., Vol. 26, No. 7, pp. 1998-2008, Jul. 2011. crossref(new window)

S. K. Singh, F. Guédon, P. J. Garsed, and R. A. McMahon, "Half-bridge SiC inverter for hybrid electric vehicles: Design, development and testing at higher operating temperature," in 6th IET International Conference on Power Electronics, Machines and Drives(PEMD 2012), pp.1-6, Mar. 2012.

M. Ikonen, "Power cycling lifetime estimation of IGBT power modules based on chip temperature modeling," Ph.D. dissertation, Lappeenranta University of Technology, Lappeenranta, Finland, Dec. 2012.