JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Zero-Voltage-Transition Synchronous DC-DC Converters with Coupled Inductors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 1,  2016, pp.74-83
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.1.74
 Title & Authors
Zero-Voltage-Transition Synchronous DC-DC Converters with Coupled Inductors
Rahimi, Akbar; Mohammadi, Mohammad Reza;
  PDF(new window)
 Abstract
A new family of zero-voltage-transition converters with synchronous rectification is introduced in this study. Soft switching condition for all the converter operating points is provided in the proposed converters. The reverse recovery losses of the rectifier switch body diode are also eliminated. In comparison with the main switch voltage stress, the auxiliary switch voltage stress is reduced significantly. The auxiliary switch does not need the floating gate drive. The auxiliary inductor is coupled with the main converter inductor, and the leakage inductor is used as the resonance inductor. Thus, all inductors of the proposed converter can be implemented on a single core. The other features of the proposed converters include no extra voltage and current stresses on the main converter semiconductor elements. Theoretical analysis for a synchronous buck converter is presented in detail, and the validity of the theoretical analysis is justified with the experimental results of a prototype buck converter with 180 W and 80 V to 30 V.
 Keywords
Coupled inductors;Synchronous converters;Synchronous rectifier;Zero voltage switching;
 Language
English
 Cited by
1.
A Family of Magnetic Coupling DC-DC Converters With Zero-Voltage-Switching Over Wide Input Voltage Range and Load Variation, Journal of Power Electronics, 2016, 16, 5, 1639  crossref(new windwow)
 References
1.
A. Asghari and H. Farzanehfard, “A driving scheme using a single control signal for a ZVT voltage driven synchronous buck converter,” Journal Power Electronics, Vol. 14, No. 2, pp. 217-225, Mar. 2014. crossref(new window)

2.
A. Asghari and H. Farzanehfard, “Synchronous rectifier driving circuit based on voltage-driven method with energy recovery,” IET Power Electronics, Vol. 7, No. 4, pp. 765-774, Apr. 2014. crossref(new window)

3.
S. Lee, S. Choi, and G. Moon, “High efficiency active clamp forward converter with synchronous switch controlled ZVS operation,” Journal Power Electronics, Vol. 6, No. 2, pp. 131-138, Apr. 2006.

4.
H.-L. Do, “Zero-voltage-switching synchronous buck converter with a coupled inductor,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3440, 3447, Aug. 2011 crossref(new window)

5.
M. Rezvanyvardom, E. Adib, H. Farzanehfard, and M. Mohammadi, “Analysis, design and implementation of zero-current transition interleaved boost converter,” IET Power Electron., Vol. 5, No. 9, pp. 1804-1812, Nov. 2012. crossref(new window)

6.
M. Ahmadi, M. R. Mohammadi, E. Adib, H. Farzanehfard, “Family of non-isolated zero current transition bi-directional converters with one auxiliary switch,” IET Power Electronics, Vol. 5, No. 2, pp. 158-165, Feb. 2012. crossref(new window)

7.
M. R. Mohammadi and H. Farzanehfard, “Analysis of diode reverse recovery effect on the improvement of soft-switching range in zero-voltage-transition bidirectional converters,” IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp. 1471-1479, Mar. 2015. crossref(new window)

8.
M. Mahdavi and H. Farzanehfard, “A new zero voltage transition bridgeless pfc with reduced conduction losses,”Journal Power Electronics, Vol. 9, No. 5, pp. 708-717, Sep. 2009.

9.
S. Abe and T. Ninomiya, “Comparison of active-clamp and ZVT techniques applied to tapped-inductor DC-DC converter with low voltage and large current,” Journal Power Electronics, Vol. 2, No. 3, pp. 199-205, Jul. 2002.

10.
I. D. Kim, S. Choi, E. C. Nho, and J. W. Ahn, “A simple ZVT PWM single-phase rectifier with reduced conduction loss and unity power factor,” Journal Power Electronics, Vol. 7, No. 1, pp. 55-63, Jan. 2007.

11.
H.-T. Yang, J.-T. Liao, and X.-Y. Cheng "Zero-voltage-transition auxiliary circuit with dual resonant tank for DC-DC converters with synchronous rectification," IET Power Electron., Vol. 6, No. 6, pp. 1157-1164, Jul. 2013. crossref(new window)

12.
H. Mao, O. A. Rahman, and I. Batarseh, “Zero-voltage-switching DC–DC converters with synchronous rectifiers,” IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 369-378, Jan. 2008. crossref(new window)

13.
E. Adib and H. Farzanehfard, “Zero-voltage-transition PWM converters with synchronous rectifier,” IEEE Trans. Power Electron., Vol. 25, No. 1, pp. 105-110, Jan. 2010. crossref(new window)

14.
N. Lakshminarasamma and V. Ramanarayanan, “A family of auxiliary switch ZVS-PWM DC-DC converters with coupled inductor,” IEEE Trans. Ind. Electron., Vol. 22, No. 5, pp. 2660-2665, Sep. 2006.

15.
M. R. Mohammadi, H. Farzanehfard, “New family of zero-voltage-transition PWM bidirectional converters with coupled inductors,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 912-919, Feb. 2012. crossref(new window)

16.
M. R. Mohammadi and H. Farzanehfard, "A bidirectional zero volt- age transition converter with coupled inductors," Power and Energy (PECon), 2010 IEEE International Conference on, pp. 57-62, 2010.

17.
S.-S. Lee, “Step-down converter with efficient ZVS operation with load variation,” IEEE Trans. Ind. Electron., Vol. 61, No. 1, pp. 591-597, Jan. 2014. crossref(new window)

18.
S. Urgun, “Zero-voltage transition–zero-current transition pulsewidth modulation DC–DC buck converter with zero-voltage switching–zero-current switching auxiliary circuit,” IET Power Electron., Vol. 5, No. 5, pp. 627-634, May 2012. crossref(new window)

19.
A. I. Pressman, Switching Power Supply Design, 2nd ed. New York: McGraw-Hill, 1998.

20.
R. W. Erickson, D. Maksimovic, Fundamentals of power electronics, 2nd ed., Springer, pp. 763-765, 2001.

21.
E. Adib and H. Farzanehfard, "Soft switching bidirectional dc-dc converter for ultracapacitor-batteries interface," Energy Convers. Manag., Vol. 50, No. 12, pp. 2879-2884, Dec. 2009. crossref(new window)

22.
H.-S. Kim, J.-W., M.-H. Ryu, J.-H. Kim, and J.-H. Jung, “Passive lossless snubbers using the coupled inductor method for the soft switching capability of boost PFC rectifiers ,” Journal Power Electronics, Vol. 15, No. 2, pp. 366-377, Mar. 2015. crossref(new window)