JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Photovoltaic Modified β-Parameter-based MPPT Method with Fast Tracking
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 1,  2016, pp.9-17
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.1.9
 Title & Authors
Photovoltaic Modified β-Parameter-based MPPT Method with Fast Tracking
Li, Xingshuo; Wen, Huiqing; Jiang, Lin; Lim, Eng Gee; Du, Yang; Zhao, Chenhao;
  PDF(new window)
 Abstract
Maximum power point tracking (MPPT) is necessary for photovoltaic (PV) power system application to extract the maximum possible power under changing irradiation and temperature conditions. The β-parameter-based method has many advantages over conventional MPPT methods; such advantages include fast tracking speed in the transient stage, small oscillations in the steady state, and moderate implementation complexity. However, a problem in the implementation of the conventional beta method is the choice of an appropriate scaling factor N, which greatly affects both the steady-state and transient performance. Therefore, this paper proposes a modified β-parameter-based method, and the determination of the N is discussed in detail. The study shows that the choice of the scaling factor N is determined by the changes of the value of β during changes in irradiation or temperature. The proposed method can respond accurately and quickly during changes in irradiation or temperature. To verify the proposed method, a photovoltaic power system with MPPT function was built in Matlab/Simulink, and an experimental prototype was constructed with a solar array emulator and dSPACE. Simulation and experimental results are illustrated to show the advantages of the improved β-parameter-based method with the optimized scaling factor.
 Keywords
Maximum power point tracking (MPPT);Modified Beta method;Photovoltaic (PV) energy;
 Language
English
 Cited by
 References
1.
T. Esram and P.L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., Vol. 22, No. 2, pp. 439-449, Jun. 2007. crossref(new window)

2.
B. Subudhi and R. Pradhan, “A comparative study on maximum power point tracking techniques for photovoltaic power systems,” IEEE Trans. Sustain. Energy, Vol. 4, No. 1, pp. 89-98, Jan. 2013. crossref(new window)

3.
M.A.G. de Brito, L. Galotto, L.P. Sampaio, G. de Azevedo e Melo, and C.A. Canesin, “Evaluation of the main mppt techniques for photovoltaic applications,” IEEE Trans. Ind. Electron., Vol. 60, No. 3, pp. 1156-1167, Mar. 2013. crossref(new window)

4.
J. Ahmad, "A fractional open circuit voltage based maximum power point tracker for photovoltaic arrays," in Proc. ICSTE, pp. 247-250, 2010.

5.
T. Noguchi, S. Togashi, and R. Nakamoto, “Short current pulse based maximum power point tracking method for multiple photovoltaic and converter module system,” IEEE Trans. Ind. Electron., Vol. 49, No. 1, pp. 217-223, Feb. 2002. crossref(new window)

6.
N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 963-973, Jul. 2005. crossref(new window)

7.
M.A. Elgendy, B. Zahawi, and D.J. Atkinson, “Operating characteristics of the p&o algorithm at high perturbation frequencies for standalone pv systems,” IEEE Trans. Energy Convers., Vol. 30, No. 1, pp. 189-198, Mar. 2015. crossref(new window)

8.
S.B. Kjær, “Evaluation of the hill climbing and the incremental conductance maximum power point trackers for photovoltaic power systems,” IEEE Trans. Energy Convers., Vol. 27, No. 4, pp. 922-929, Dec. 2012. crossref(new window)

9.
K.S. Tey and S. Mekhilef, "Modified incremental conductance mppt algorithm to mitigate inaccurate responses under fast-changing solar irradiation level," Solar Energy, Vol. 101, pp. 333-342, Jan. 2014. crossref(new window)

10.
G. Hsieh, H. Hsieh, C. Tsai, and C. Wang, “Photovoltaic power-increment-aided incremental-conductance MPPT with two-phased tracking,” IEEE Trans. Power Electron., Vol. 28, No. 6, pp. 963-973, Jun. 2013. crossref(new window)

11.
W. Xiao, W.G. Dunford, P.R. Palmer, and A. Capel, “Application of centered differentiation and steepest descent to maximum power point tracking,” IEEE Trans. Ind. Electron., Vol. 54, No. 5, pp. 2539-2549, Oct. 2007. crossref(new window)

12.
A. Pandey, N. Dasgupta, and A.K. Mukerjee, “High-performance algorithms for drift avoidance and fast tracking in solar mppt system,” IEEE Trans. Energy Convers., Vol. 23, No. 2, pp. 681-689, Jun. 2008. crossref(new window)

13.
F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size inc mppt method for pv systems,” IEEE Trans. Ind. Electron., Vol. 55, No. 7, pp. 2622-2628, Jul. 2008. crossref(new window)

14.
Q. Mei, M. Shan, L. Liu, and J.M. Guerrero, “A novel improved variable step-size incremental-resistance mppt method for pv systems,” IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2427-2434, Jun. 2011. crossref(new window)

15.
E.M. Ahmed and M. Shoyama, “Variable step size maximum power point tracker using a single variable for stand-alone battery storage PV systems,” Journal of Power Electronics, Vol. 11, No. 2, pp. 218-227, Mar. 2011. crossref(new window)

16.
W. Xiao and W.G. Dunford, "A modified adaptive hill climbing mppt method for photovoltaic power systems," in Proc. IEEE PESC, pp. 1957-1963, 2004.

17.
R. Kim, J. Lai, B. York, and A. Koran, “Analysis and design of maximum power point tracking scheme for thermoelectric battery energy storage system,” IEEE Trans. Ind. Electron., Vol. 56, No. 9, pp. 3709-3716, Sep. 2009. crossref(new window)

18.
Z. Xu, P. Yang, D. Zhou, P. Li, J. Lei and Y. Chen, “An improved variable step size MPPT algorithm based on INC,” Journal of Power Electronics, Vol. 15, No. 2, pp. 487-496, Mar. 2015. crossref(new window)

19.
E.M. Ahmed and M. Shoyama, “Scaling factor design based variable step size incremental resistance maximum power point tracking for PV systems,” Journal of Power Electronics, Vol. 12, No. 1, pp. 218-227, Jan. 2012. crossref(new window)

20.
K. Lee and R. Kim, “An adaptive maximum power point tracking scheme based on a variable scaling factor for photovoltaic systems,” IEEE Trans. Energy Convers., Vol. 27, No. 4, pp. 1002-1008, Dec 2012. crossref(new window)

21.
F. Zhang, K. Thanapalan, A. Procter, S. Carr and J. Maddy, “Adaptive hybrid maximum power point tracking method for a photovoltaic system,” IEEE Trans. Energy Convers., Vol. 28, No. 2, pp. 353-360, Dec. 2012. crossref(new window)

22.
K.L. Lian, J.H. Jhang and I.S. Tian, “A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization,” IEEE J. Photovoltaics, Vol. 4, No. 2, pp. 626-633, Mar. 2014. crossref(new window)

23.
S.K. Kollimalla and M.K. Mishra, “Variable perturbation size adaptive p&o mppt algorithm for sudden changes in irradiance,” IEEE Trans. Sustain. Energy, Vol. 5, No. 3, pp. 718-728, Jul. 2014. crossref(new window)

24.
T.K. Soon and S. Mekhilef, “A fast-converging mppt technique for photovoltaic system under fast-varying solar irradiation and load resistance,” IEEE Trans. Ind. Informat., Vol. 11, No. 1, pp. 176-186, Feb 2015. crossref(new window)

25.
S. Jain and V. Agarwal, “A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems,” IEEE Power Electron. Lett., Vol. 2, No. 1, pp. 16-19, Mar. 2004. crossref(new window)

26.
S. Jain and V. Agarwal, “Comparison of the performance of maximum power point tracking schemes applied to single-stage grid-connected photovoltaic systems,” IET Electric Power Applicat., Vol. 1, No. 5, pp. 753-762, Sep. 2007. crossref(new window)

27.
X. Li, H. Wen and C. Zhao, "Improved Beta Parameter based MPPT Method in Photovoltaic System," in Proc. IEEE ICPE & ECCE, pp.1405-1412, 2015.

28.
S. Park, J. Shin, J. Park, and H. Jeon, "Dynamic analysis and controller design for standalone operation of photovoltaic power conditioners with energy storage," Journal of Electrical Engineering & Technology, Vol. 9, No. 6, pp. 2004-2012, Nov. 2014. crossref(new window)

29.
W. Xiao, H.H. Zeineldin, and P. Zhang, “Statistic and Parallel Testing Procedure for Evaluating Maximum Power Point Tracking Algorithms of Photovoltaic Power Systems,” IEEE Journal of Photovoltaics, Vol. 3, No. 3, pp.1062-1069, Jul. 2013 crossref(new window)

30.
T. Andrejasic, M Jankovec, and M. Topič, “Comparison of direct maximum power point tracking algorithms using EN 50530 dynamic test procedure,” IET Renewable Power Generation., Vol. 5, No. 4, pp.281-286, Jul. 2011. crossref(new window)