JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A High-Efficiency High Step-Up Interleaved Converter with a Voltage Multiplier for Electric Vehicle Power Management Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 2,  2016, pp.414-424
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.2.414
 Title & Authors
A High-Efficiency High Step-Up Interleaved Converter with a Voltage Multiplier for Electric Vehicle Power Management Applications
Tseng, Kuo-Ching; Chen, Chun-Tse; Cheng, Chun-An;
  PDF(new window)
 Abstract
This paper proposes a novel high-efficiency high-step-up interleaved converter with a voltage multiplier, which is suitable for electric vehicle power management applications. The proposed interleaved converter is capable of achieving high step-up conversion by employing a voltage-multiplier circuit. The proposed converter lowers the input-current ripple, which can extend the input source's lifetime, and reduces the voltage stress on the main switches. Hence, large voltage spikes across the main switches are alleviated and the efficiency is improved. Finally, a prototype circuit with an input voltage of 24 V, an output voltage of 380 V, and an output rated power of 1 kW is implemented and tested to demonstrate the functionality of the proposed converter. Moreover, satisfying experimental results are obtained and discussed in this paper. The measured full-load efficiency is 95.2%, and the highest measured efficiency of the proposed converter is 96.3%.
 Keywords
High step-up conversion;Interleaved boost converter;
 Language
English
 Cited by
 References
1.
J. T. Bialasiewicz, “Renewable energy systems with photovoltaic power generators: Operation and modeling,” IEEE Trans. Ind. Electron., Vol. 55, No. 7, pp. 2752-2758, Jul. 2008. crossref(new window)

2.
Y. Xiong, X. Cheng, Z. J. Shen, C. Mi, H. Wu, and V. K. Garg, “Prognostic and warning system for power-electronic modules in electric, hybrid electric, and fuel-cell vehicles,” IEEE Trans. Ind. Electron., Vol. 55, No. 6, pp. 2268-2276, Jun. 2008. crossref(new window)

3.
H. Tao, J. L. Duarte, and M. A.M. Hendrix, “Line-interactive UPS using a fuel cell as the primary source,” IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 3012-3021, Aug. 2008. crossref(new window)

4.
R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 240-250, Jan. 2008. crossref(new window)

5.
R. J. Wai and W. H. Wang, “Grid-connected photovoltaic generation system,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 3, pp. 953-964, Apr. 2008. crossref(new window)

6.
K. Jin, X. Ruan, M. Yan, and M. Xu, “A hybrid fuel cell system,” IEEE Trans. Ind. Electron., Vol. 56, No. 4, pp. 1212-1222, Apr. 2009. crossref(new window)

7.
L. Gao, R. A. Dougal, S. Liu, and A. P. Iotova, “Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1548-1556, May 2009. crossref(new window)

8.
B. Yang, W. Li, Y. Zhao, and X. He, “Design and analysis of a grid-connected photovoltaic power system,” IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 992-1000, Apr. 2010. crossref(new window)

9.
A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, “Cascaded dc-dc converter photovoltaic systems: Power optimization issues,” IEEE Trans. Ind. Electron., Vol. 58, No. 2, pp. 403-411, Feb. 2011. crossref(new window)

10.
T. Kefalas and A. Kladas, “Analysis of transformers working under heavily saturated conditions in grid-connected renewable energy systems, ” IEEE Trans. Ind. Electron., Vol. 59, No. 5, pp. 2342-2350, May. 2012. crossref(new window)

11.
S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up DC-DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2007-2017, Jun. 2010. crossref(new window)

12.
W. Li and X. He, “Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1239-1250, Apr. 2011. crossref(new window)

13.
A. K. Rathore, A. K. S. Bhat, and R. Oruganti, “Analysis, design and experimental results of wide range ZVS active-clamped L-L type current-fed dc/dc converter for fuel cells to utility interface,” IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 473-485, Jan. 2012. crossref(new window)

14.
W. Li, W. Li, X. He, D. Xu, and B. Wu, “General derivation law of nonisolated high-step-up interleaved converters with built-in transformer,” IEEE Trans. Ind. Electron., Vol. 59, No. 3, pp. 1650-1661, Mar. 2012. crossref(new window)

15.
K. C. Tseng, C. C. Huang, and W. Y. Shih, “A high step-up converter with a voltage multiplier module for a photovoltaic system,” IEEE Trans. Power Electron., Vol. 28, No. 6, pp. 3047-3057, Jun. 2013. crossref(new window)

16.
C. T. Pan and C. M. Lai, “A high-efficiency high step-up converter with low switch voltage stress for fuel-cell system applications,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 1998-2006, Jun. 2010. crossref(new window)

17.
S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A safety enhanced, high step-up dc-dc converter for ac photovoltaic module application,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp.1809-1817, Apr. 2012. crossref(new window)

18.
T. J. Liang, J. H. Lee, S. M. Chen, J. F. Chen, and L. S. Yang, “Novel isolated high-step-up DC-DC converter with voltage lift,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 161-171, April 2013. crossref(new window)

19.
Y. Zhao, X. Xiang, W. Li, X. He, and C. Xia, “Advanced symmetrical voltage quadrupler rectifiers for high step-up and high output-voltage converters,” IEEE Trans. Power Electron., Vol. 28, No. 4, pp.1622-1631, April 2013. crossref(new window)

20.
W. Li, X. Xiang, C. Li, W. Li, and X. He, “Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system,” IEEE Trans. Ind. Electron., Vol. 28, No. 1, pp. 300-313, Jan. 2013.

21.
F. Evran and M. T. Aydemir, “Isolated high step-up DC-DC converter with low voltage stress,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3591-3603, July 2014. crossref(new window)

22.
K. C. Tseng and C. C. Huang, “High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1311-1319, Mar. 2014. crossref(new window)

23.
K. C. Tseng, J. Z. Chen, J. T. Lin, C. C. Huang, and T. H. Yen, “High step-up interleaved forward-flyback boost converter with three-winding coupled inductors” IEEE Trans. Power Electron., Vol. 30, No. 9, pp. 4696-4703, Sep. 2015. crossref(new window)

24.
W. Li, W. Li, X. Xiang, Y. Hu, and X. He, “High step-up interleaved converter with built-in transformer voltage multiplier cells for sustainable energy applications,” IEEE Trans. Ind. Electron., Vol. 29, No. 6, pp. 2829-2836, Jun. 2014.

25.
K. C. Tseng and C. C. Huang, “High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1311-1319, Mar. 2014. crossref(new window)

26.
Gustavo A. L. Henn, R. N. A. L. Silva, Paulo P. Praca, Luiz H. S. C. Barreto, and Demercil S. Oliveira, Jr, “Interleaved-boost converter with high voltage gain,” IEEE Trans. Power Electron., Vol. 25, No. 11, pp. 2753-2761, Nov. 2010. crossref(new window)