A Novel High Step-Up Converter with a Switched-Coupled-Inductor-Capacitor Structure for Sustainable Energy Systems

- Journal title : Journal of Power Electronics
- Volume 16, Issue 2, 2016, pp.436-446
- Publisher : The Korean Institute of Power Electronics
- DOI : 10.6113/JPE.2016.16.2.436

Title & Authors

A Novel High Step-Up Converter with a Switched-Coupled-Inductor-Capacitor Structure for Sustainable Energy Systems

Liu, Hongchen; Ai, Jian; Li, Fei;

Liu, Hongchen; Ai, Jian; Li, Fei;

Abstract

A novel step-up DC-DC converter with a switched-coupled-inductor-capacitor (SCIC) which successfully integrates three-winding coupled inductors and switched-capacitor techniques is proposed in this paper. The primary side of the coupled inductors for the SCIC is charged by the input source, and the capacitors are charged in parallel and discharged in series by the secondary windings of the coupled inductor to achieve a high step-up voltage gain with an appropriate duty ratio. In addition, the passive lossless clamped circuits recycle the leakage energy and reduce the voltage stress on the main switch effectively, and the reverse-recovery problem of the diodes is alleviated by the leakage inductor. Thus, the efficiency can be improved. The operating principle and steady-state analyses of the converter are discussed in detail. Finally, a prototype circuit at a 50 kHz switching frequency with a 20-V input voltage, a 200-V output voltage, and a 200-W output power is built in the laboratory to verify the performance of the proposed converter.

Keywords

Coupled inductor;High step-up voltage gain;Low voltage stress;Switched capacitor;

Language

English

References

1.

L. Palma, M. H. Todorovic, and P. Enjeti, "A high gain transformerless DC-DC converter for fuel-cell applications," in IEEE 36^{th} Power Electronics Specialists Conference, pp. 2514-2520, Jun. 2005.

2.

S. V. Araujo, R. P. Torrico-Bascope, and G. V. Torrico-Bascope, “Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 1987–1997, Jun. 2010.

3.

V. V. R. Scarpa, S. Buso, and G. Spiazzi, “Low-complexity MPPT technique exploiting the PV Module MPP locus characterization,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1531–1538, May 2009.

4.

B. Yang, W. Li, Y. Zhao, and X. He, “Design and analysis of a grid connected PV power system,” IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 992–1000, Apr. 2010.

5.

M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5673–5689, Dec. 2013.

6.

X. Hu and C. Gong, “A high voltage gain DC-DC converter integrating coupled-inductor and diode-capacitor techniques,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 789–800, Feb. 2014.

7.

B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 55, No. 2, pp. 687–696, Mar. 2008.

8.

O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched capacitor circuit,” IEEE Trans. Circuits Syst. I, Fundam, Theory Appl., Vol. 50, No. 8, pp. 1098–1102, Aug. 2003.

9.

Y. Tang, D. J. Fu, and T. Wang, “Hybrid switched-inductor converters for high step-up conversion,” IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp.1480–1490, Mar. 2015.

10.

Y. Jiao, F. L. Luo, and M. Zhu, “Voltage-lift-type switched-inductor cells for enhancing DC–DC boost ability: principles and integrations in Luo converter,” IET Power Electronics, Vol. 4, No. 1, pp. 131–142, Jan. 2011.

11.

F. L. Luo and H. Ye, “Positive output super-lift converters,” IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 105–113, 2003.

12.

F. L. Luo and H. Ye, “Positive output multiple-lift push– pull switched-capacitor Luo-converters,” IEEE Trans. Ind. Electron., Vol. 51, No. 3, pp. 594–602, Jun. 2004.

13.

X. Hu and C. Gong, “A high voltage gain DC-DC converter integrating coupled-inductor and diode-capacitor techniques,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 789–800, Feb. 2014.

14.

R. J. Wai and R. Y. Duan, “High-efficiency DC/DC converter with high voltage gain,” IEE Proceedings Electric Power Applications, Vol. 152, No. 4, pp. 793–802, Jul. 2005.

15.

X. Hu and C. Gong, “A high voltage gain DC-DC converter integrating coupled-inductor and diode-capacitor techniques,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 789–800, Feb. 2014.

16.

L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless DC–DC converters with high step-up voltage gain,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3144–3152, Aug. 2009.

17.

B. R. Lin and F. Y. Hsieh, “Soft-switching zeta–flyback converter with a buck–boost type of active clamp,” IEEE Trans. Ind. Electron., Vol. 54, No. 5, pp. 2813–2822, Oct. 2007.

18.

T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, "Boost converter with coupled inductors and buck-boost type of active clamp," in IEEE 36^{th} Power Electronics Specialists Conference, pp. 399-405, Jun. 2005.

19.

Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel high step-Up DC–DC converter for distributed generation system,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1473–1482, Apr. 2013.

20.

Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “A novel high step-up DC–DC converter for a microgrid system,” IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1127–1136, Apr. 2011.

21.

Q. Zhao and F. C. Lee, “High-efficiency, high step-up DC–DC converters,” IEEE Trans. Power Electron., Vol. 18. No. 1, pp. 65-73, Jan. 2003.

22.

F. Zhang, L. Du, F. Z. Pen, and Z. M. Qian, “A new design method for high-power high-efficiency switched-capacitor DC–DC converters,” IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 832–840, Mar. 2008.

23.

O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Trans. Circuits Syst. I, Fundam, Theroy Appl., Vol. 50, No. 8, pp. 1098–1102, Aug. 2003.

24.

R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1025–1035, Sep. 2005.

25.

Q. Zhao and F. C. Lee, "High performance coupled-inductor DC-DC converters," in 18^{th} Annual IEEE Applied Power Electronics Conference and Exposition(APEC), Vol. 1, pp. 109-113, Feb. 2003.

26.

R. J. Wai., L. W. Liu, and R. Y. Duan, “High-efficiency voltage-clamped DC– DC converter with reduced reverse-recovery current and switch voltage stress,” IEEE Trans. Ind. Electron., Vol. 53, No. 1, pp. 272–280, Feb. 2006.

27.

Q. M. Luo, Y. Zhang, P. J. Sun, and L. W. Zhou, “An active clamp high step-up boost converter with a coupled inductor,” Journal of Power Electronics, Vol. 15, No. 1, pp. 86-95, Jan. 2015.

28.

S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Step-up DC–DC converter by coupled inductor and voltage-lift technique,” IET Power Electronics, Vol. 3, No. 3, pp. 369–378, May 2010.