JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PWM Control Techniques for Single-Phase Multilevel Inverter Based Controlled DC Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 2,  2016, pp.498-511
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.2.498
 Title & Authors
PWM Control Techniques for Single-Phase Multilevel Inverter Based Controlled DC Cells
Sayed, Mahmoud A.; Ahmed, Mahrous; Elsheikh, Maha G.; Orabi, Mohamed;
  PDF(new window)
 Abstract
This paper presents a single-phase five-level inverter controlled by two novel pulse width modulation (PWM) switching techniques. The proposed PWM techniques are designed based on minimum switching power loss and minimum total harmonic distortion (THD). In a single-phase five-level inverter employing six switches, the first proposed PWM technique requires four switches to operate at switching frequency and two other switches to operate at line frequency. The second proposed PWM technique requires only two switches to operate at switching frequency and the rest of the switches to operate at line frequency. Compared with conventional PWM techniques for single-phase five-level inverters, the proposed PWM techniques offer high efficiency and low harmonic components in the output voltage. The validity of the proposed PWM switching techniques in controlling single-phase five-level inverters to regulate load voltage is verified experimentally using a 100 V, 500 W laboratory prototype controlled by dspace 1103.
 Keywords
Multilevel inverter;PWM;Single-phase inverter;Voltage control;
 Language
English
 Cited by
1.
A New Single-Phase Asymmetrical Cascaded Multilevel DC-Link Inverter, Journal of Power Electronics, 2016, 16, 4, 1504  crossref(new windwow)
 References
1.
P. Chan, H.-H. Chung, and S. Hui, “A generalized theory of boundary control for a single-phase multilevel inverter using second-order switching surface,” IEEE Trans. Power Electron., Vol. 24, No. 10, pp. 2298-2313, Oct. 2009. crossref(new window)

2.
Y.-H. Liao and C.-M. Lai, “Newly-constructed simplified single-phase multistring multilevel inverter topology for distributed energy resources,” IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2386-2392, Sep. 2011. crossref(new window)

3.
J. Rodriguez, J.-S. Lai, and F. Z. Peng, “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug. 2002. crossref(new window)

4.
J. Wen and K. Smedley, “Synthesis of multilevel convertersbased on single- and/or three-phase converter building blocks,” IEEE Trans. Power Electron., Vol. 23, No. 3, pp. 1247-1256, May 2008. crossref(new window)

5.
I. Pharne and Y. Bhosale, "A review on multilevel inverter topology," in International Conference on Power, Energy and Control (ICPEC), pp. 700-703.

6.
J.-S. Lai and F. Z. Peng, "Multilevel converters - A new breed of power converters," in IEEE Thirtieth IAS Annual Meeting, IAS '95., Vol.3.pp. 2348- 2356.

7.
S. Sirisukprasert, J.-S. Lai, and T.-H. Liu, “Optimum harmonic reduction with a wide range of modulation indexes for multilevel converters,” IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 875-881, Aug. 2002. crossref(new window)

8.
P. Rodriguez, M. Bellar, R. Munoz-Aguilar, S. Busquets-Monge, and F. Blaabjerg, “Multilevel-clamped multilevel converters (mlc2),” IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1055-1060, Mar. 2012. crossref(new window)

9.
F. Zare and G. Ledwich, “A hysteresis current control for single-phase multilevel voltage source inverters: PLD implementation,” IEEE Trans. Power Electron., Vol. 17, No. 5, pp. 731-738, Sep. 2002. crossref(new window)

10.
X. Zhang and J. Spencer, “Study of multisampled multilevel inverters to improve control performance,” IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4409-4416, Nov. 2012. crossref(new window)

11.
J. Salmon, A. Knight, and J. Ewanchuk, “Single-phase multilevel PWM inverter topologies using coupled inductors,” IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1259-1266, May 2009. crossref(new window)

12.
A. Nabae, I. Takahashi, and H. Akagi, “A new neutral-point- clamped PWM inverter,” IEEE Trans. Ind. Appl., Vol. IA-17, No. 5, pp. 518-523, Sep. 1981. crossref(new window)

13.
B. McGrath and D. Holmes, “Multicarrier PWM strategies for multilevel inverters,” IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 858- 867, Aug. 2002. crossref(new window)

14.
S. Priyan and K. Ramani, "Implementation of closed loop system for flying capacitor multilevel inverter with stand-alone photovoltaic input," in International Conference on Power, Energy and Control (ICPEC), pp. 281-286, 2013.

15.
K. Corzine and X. Kou, “Capacitor voltage balancing in full binary combination schema flying capacitor multilevel inverters,” IEEE Power Electronics Letters, Vol. 1, No. 1, pp. 2-5, Mar. 2003. crossref(new window)

16.
X. Kou, K. Corzine, and Y. Familiant, “A unique fault-tolerant design for flying capacitor multilevel inverter,” IEEE Trans. Power Electron., Vol. 19, No. 4, pp. 979-987, Jul. 2004. crossref(new window)

17.
H. Liu, L. Tolbert, S. Khomfoi, B. Ozpineci, and Z. Du, "Hybrid cascaded multilevel inverter with PWM control method," in IEEE Power Electronics Specialists Conference, PESC 2008, pp. 162-166, 2008.

18.
E. Villanueva, P. Correa, J. Rodriguez, and M. Pacas, “Control of a single-phase cascaded H-bridge multilevel inverter for grid-connected photovoltaic systems,” IEEE Trans. Ind. Electron., Vol. 56, No. 11, pp. 4399-4406, Nov. 2009. crossref(new window)

19.
S. Mekhilef and M. Kadir, “Novel vector control method for three-stage hybrid cascaded multilevel inverter,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1339-1349, Apr. 2011. crossref(new window)

20.
Y. Hinago and H. Koizumi, “A single-phase multilevel inverter using switched series/parallel dc voltage sources,” IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2643-2650, Aug. 2010. crossref(new window)

21.
V. Agelidis, D. Baker, W. Lawrance, and C. V. Nayar, "A multilevel PWM inverter topology for photovoltaic applications," in IEEE International Symposium on Industrial Electronics, ISIE '97., Vol. 2, pp. 589-594, 1997.

22.
S.-J. Park, F.-S. Kang, M. H. Lee, and C.-U. Kim, “A new single-phase five-level PWM inverter employing a deadbeat control scheme,” IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 831-843, May 2003. crossref(new window)

23.
G.-J. Su, “Multilevel DC-link inverter,” IEEE Trans. Ind. Appl., Vol. 41, No. 3, pp. 848-854, May/Jun. 2005. crossref(new window)

24.
Z. Li, P. Wang, Y. Li, and F. Gao, “A novel single-phase five-level inverter with coupled inductors,” IEEE Trans. Power Electron., Vol. 27, No. 6, pp. 2716-2725, Jun. 2012. crossref(new window)

25.
K. Gupta and S. Jain, "Multilevel inverter topology based on series connected switched sources," IET Power Electron., Vol. 6, No. 1, pp. 164-174, Jan. 2013. crossref(new window)

26.
E. Beser, B. Arifoglu, S. Camur, and E. Beser, "A novel topology for single-phase five-level inverter," in 5th WSEAS/IASME conference on electric power systems, pp. 314-319.

27.
E. Babaei, “A cascade multilevel converter topology with reduced number of switches,” IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2657- 2664, Nov. 2008. crossref(new window)

28.
M. Kangarlu and E. Babaei, “A generalized cascaded multilevel inverter using series connection of submultilevel inverters,” IEEE Trans. Power Electron., Vol. 28, Vol. 2, pp. 625-636, Feb. 2013. crossref(new window)

29.
M. Ahmed, M. Elsheikh, M. Sayed, and M. Orabi, "Single-phase five-level inverter with less number of power elements for grid connection," in Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1521-1527, 2012.