Advanced SearchSearch Tips
A New Interleaved Double-Input Three-Level Boost Converter
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 3,  2016, pp.925-935
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.3.925
 Title & Authors
A New Interleaved Double-Input Three-Level Boost Converter
Chen, Jianfei; Hou, Shiying; Sun, Tao; Deng, Fujin; Chen, Zhe;
  PDF(new window)
This paper proposes a new interleaved double-input three-level Boost (DITLB) converter, which is composed of two boost converters indirectly in series. Thus, a high voltage gain, together with a low component stress and a small input current ripple due to the interleaved control scheme, is achieved. The operating principle of the DITLB converter under the individual supplying power (ISP) and simultaneous supplying power (SSP) mode is analyzed. In addition, closed-loop control strategies composed of a voltage-current loop and a voltage-balance loop, have been researched to make the converter operate steadily and to alleviate the neutral-point imbalance issue. Experimental results verify correctness and feasibility of the proposed topology and control strategies.
Boost;Double-input;Interleaved scheme;Three-level;Voltage-balance;
 Cited by
J. J. Zhang, H. F. Wu, K. Sun, Y. Xing, F. Cao, “A novel dual-input boost-buck converter with coupled inductor for distributed thermoelectric generation systems,” Journal of Power Electronics, Vol. 15, No. 4, pp. 899-909, Jul. 2015. crossref(new window)

Y. C. Liu and Y. M. Chen, “A systematic approach to synthesizing multi-input DC-DC converters,” IEEE Trans. Power Electron., Vol, 24, No. 1, pp. 116-127, Jan. 2009. crossref(new window)

A. Kwasinski, “Identification of feasible topologies for multiple-input DC-DC converters,” IEEE Trans. Power Electron., Vol, 24, No. 3, pp. 856-861, Mar. 2009. crossref(new window)

S. Choi, V. G. Agelidis, J. Yang, D. Coutellier, and P. Marabeas, “Analysis, design and experimental results of a floating-output interleaved-input boost-derived DC-DC high-gain transformer-less converter,” IET Power Electron., Vol. 4, No. 1, pp. 168-180, Jan. 2011. crossref(new window)

L. Z. He, T. Zeng, T. Li, Y. X. Liao, and W. Zhou, “High step-up active-clamp converter with an input current doubler and a symmetrical switched-capacitor circuit,” Journal of Power Electronics, Vol. 15, No. 3, pp. 587-601, May 2015. crossref(new window)

Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel high step-up DC-DC converter with coupled-inductor and switched- capacitor techniques,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 998-1007, Feb. 2012. crossref(new window)

L. S. Yang, T. J. Liang, and H. C. Lee, “Novel high step-up DC-DC converter with coupled-inductor and voltagedoubler circuits,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4196- 4206, Sep. 2011. crossref(new window)

W. Chen, X. G. Wu, L. Z. Yao, W. Jiang, and R. J. Hu, “Step-up resonant converter for grid-connected renewable energy sources,” IEEE Trans. Power Electron., Vol. 30, No. 6, pp. 3017-3029, Jun. 2015. crossref(new window)

K. Filsoof, A. A. Hagar, and P. W. Lehn, “A transformerless modular step-up DC-DC converter for high power applications,” IET Power Electron., Vol.7, No.8, pp. 2190-2199, Aug. 2014. crossref(new window)

A. A. Hagar and P. W. Lehn, “Comparative evaluation of a new family of transformerless modular DC-DC converters for high-power applications,” IEEE Trans. Power Del., Vol. 29, No. 1, pp. 444-452, Feb. 2014. crossref(new window)

Z. Hao, J. H. Zhou, B. Hu, and T. Chao-nan, "A new interleaved three-level boost converter and neutral-point potential balancing," in Instrumentation and Measurement, Sensor Network and Automation (IMSNA), 2013 2nd International Symposium on, pp. 1093-1096, 2013.

V. Yaramasu and B. Wu, “Predictive control of a three-level boost converter and an NPC inverter for high-power PMSG-based medium voltage wind energy conversion systems,” IEEE Trans. Power Electron, Vol. 29, No. 10, pp. 5308-5322, Oct. 2014. crossref(new window)

C. L. Xia, X. Gu, T. N Shi, and Y. Yan, “Neutral-point potential balancing of three-level inverters in direct- driven wind energy conversion system,” IEEE Trans. Energy Convers., Vol. 26, No. 1, pp. 18-29, Mar. 2011. crossref(new window)

Y. Zhang, J. T. Sun, and Y. F. Wang, “Hybrid boost three-level DC-DC converter with high voltage gain for photovoltaic generation systems,” IEEE Trans. Power Electron., Vol. 28, No. 8, pp. 3659-3664, Aug. 2013. crossref(new window)

J. C. R. Caro, J. M. Ramirez, F. Z. Peng, and A. Valderrabano, “A DC-DC multilevel boost converter,” IET Power Electron., Vol. 3, No. 1, pp. 129-137, Jan. 2010. crossref(new window)

J. C. M. Maldonado, R. S. Cabrera, J. C. R. Caro, and J. De Leon-Morales, and E. N. Salas-Cabrera, “Modelling and control of a DC-DC multilevel boost converter,” IET Power Electron., Vol. 4, No. 6, pp. 693-700, Jul. 2011. crossref(new window)

J. Zhao, Y. L. Han, X. N. He, C. Tan, and R. Zhao, “Multilevel circuit topologies based on the switched-capacitor converter and diode-clamped converter,” IEEE Trans. Power Electron., Vol. 26, No. 8, pp. 2127-2136, Aug. 2011. crossref(new window)

Z. L. Shu, X. Q. He, Z. Y. Wang, D. Qiu, and Y. Jing, “Voltage balancing approaches for diode-clamped multilevel converters using auxiliary capacitor-based circuits,” IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2111-2124, May 2013. crossref(new window)

Y. Jang and M. M. Jovanovic, “An interleaved boost converter with intrinsic voltage-doubler characteristic for universal- line PFC front end,” IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1394-1401, Jul. 2007. crossref(new window)

L. W. Zhou, B. X. Zhu, and Q. M. Luo, “High step-up converter with capacity of multiple input,” IET Power Electron, Vol. 5, No. 5, pp. 524-531, May 2012. crossref(new window)

S. Y. Hou, J. F. Chen, T. Sun, and X. H. Bi, “Multi-input step-up converters based on the switched-diode- capacitor voltage accumulator,” IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 381-393, Jan. 2016. crossref(new window)