JOURNAL BROWSE
Search
Advanced SearchSearch Tips
An Isolated High Step-Up Converter with Non-Pulsating Input Current for Renewable Energy Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 4,  2016, pp.1277-1287
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.4.1277
 Title & Authors
An Isolated High Step-Up Converter with Non-Pulsating Input Current for Renewable Energy Applications
Hwu, Kuo-Ing; Jiang, Wen-Zhuang;
  PDF(new window)
 Abstract
This study proposes a novel isolated high step-up galvanic converter, which is suitable for renewable energy applications and integrates a boost converter, a coupled inductor, a charge pump capacitor cell, and an LC snubber. The proposed converter comprises an input inductor and thus features a continuous input current, which extends the life of the renewable energy chip. Furthermore, the proposed converter can achieve a high voltage gain without an extremely large duty cycle and turn ratio of the coupled inductor by using the charge pump capacitor cell. The leakage inductance energy can be recycled to the output capacitor of the boost converter via the LC snubber and then transferred to the output load. As a result, the voltage spike can be suppressed to a low voltage level. Finally, the basic operating principles and experimental results are provided to verify the effectiveness of the proposed converter.
 Keywords
Isolated high step-up galvanic converter;Continuous input current;Coupled inductor;Charge pump;LC snubber;
 Language
English
 Cited by
 References
1.
H. Hu, S. Harb, N. Kutkut, I. Batarseh, and Z. J. Shen, “Power decoupling techniques for micro-inverters in PV systems-a review,” IEEE ECCE’10, pp. 3235-3240, 2010.

2.
Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different dc link configurations,” IEEE Trans. Power Electron., Vol. 23, No. 3, pp. 1320-1333, May 2008. crossref(new window)

3.
M. David, N. Scholten, and W. L. Soong, “Mirco-inverters in small scale PV systems: a review and future directions,” IEEE AUPEC’13, pp. 1-6, 2013.

4.
R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell: KLuwer Academic Publishers, 2001.

5.
K. I. Hwu and T. J. Peng, “High-voltage-boosting converter with charge pump capacitor and coupling inductor combined with buck-boost converter,” IET Power Electron., Vol. 47, No. 1, pp. 177-188, Jan. 2014. crossref(new window)

6.
G. M. L. Chu, D. D. C. Lu, and V. G. Agelidis, “Flyback-based high step-up converter with reduced power processing,” IET Power Electron., Vol. 5, No. 3, pp. 349-357, Mar. 2012. crossref(new window)

7.
S. Dwari and L. Parsa, “An efficient high-step-up interleaved dc-dc converter with a common active clamp,” IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 66-78, Jan. 2011. crossref(new window)

8.
K. I. Hwu and Y. T. Yau, “High step-up converter based on coupling inductor and bootstrap capacitors with active clamping,” IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 2655-2660, Jun. 2014. crossref(new window)

9.
Y. Berkovich and B. Axelrod, “High step-up dc-dc converter with coupled inductor and reduced switch-voltage stress,” IEEE IECON’12, pp. 453-458, 2012.

10.
K. I. Hwu and W. Z. Jiang, “Voltage gain enhancement for a step-up converter constructed by KY and buck-boost converters,” IEEE Trans. Ind. Electron., Vol. 61, No. 4, pp. 1758-1768, Apr. 2014. crossref(new window)

11.
Y. Tang, T. Wang, and Y. He, “A switched-capacitor-based active network converter with high voltage gain,” IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 2959-2968, Jun. 2014. crossref(new window)

12.
K. I. Hwu and W. C. Tu, “Voltage-boosting converters with energy pumping,” IET Power Electron., Vol. 5, No. 2, pp. 185-195, Feb. 2012. crossref(new window)

13.
Y. J. A. Alcazar, D. de Souza Oliveira, F. L. Tofoli, and R. P. Torrico-Bascope, “DC-DC nonisolated boost converter based on the three-state switching cell and voltage multiplier cells,” IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4438-4449, Oct. 2013. crossref(new window)

14.
M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, “Voltage multiplier cells applied to non-isolated dc-dc converters,” IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 871-887, Mar. 2008. crossref(new window)

15.
M. Pavlovsky, S. W. H. de Hann, and J. A. Ferreira, “Reaching high power density in multikilowatt dc-dc converters with galvanic isolation,” IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 603-612, Mar. 2009. crossref(new window)

16.
G. Spiazzi, P. Mattavelli, and C. Alessandro, “High step-up ratio flyback converter with active clamp and voltage multiplier,” IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 603-612, Nov. 2011. crossref(new window)

17.
J. H. Jang, D. H. Kim, J. W. Seo, and J. H. Park, “Series-connected isolated switched-capacitor tappedinductor boost converter,” IEEE PEDS’13, 277-279, 2013.

18.
M. Kasper, M. Ritz, D. Bortis, and J. W. Kolar, ”PV panel-integrated high step-up high efficiency isolated GaN dc-dc boost converter,” IEEE INTELEC’13, pp. 1-7, 2013.

19.
D. Murthy-Bellur and M. K. Kazimierczuk, “Two-switch flyback PWM DC-DC converter in discontinuous-conduction mode,” Int. J. Circ. Theor. Appl., Vol. 39, No. 8, pp. 849-864, Aug. 2011.

20.
D. Murthy-Bellur and M. K. Kazimierczuk, “Two-switch flyback PWM DC-DC converter in continuous-conduction mode,” Int. J. Circ. Theor. Appl., Vol. 39, No. 11, pp. 1145-1160, Nov. 2011. crossref(new window)

21.
K. I. Hwu, W. Z. Jiang, and J. Y. Chien, “Isolated high voltage-boosting converter derived from forward converter,” Int. J. Circ. Theor. Appl., Vol. 44, No. 2, pp. 280-304, Feb. 2016. crossref(new window)

22.
K. I. Hwu, Y. T. Yau, and L. L. Lee, “Powering LED using high-efficiency SR flyback converter,” IEEE Trans. Ind. Appl., Vol. 47, No. 1, pp. 376-386, Jan./Feb. 2011. crossref(new window)

23.
K. Patidar and A. C. Umarikar, “A step-up PWM DC-DC converter for renewable energy applications,” Int. J. Circ. Theor. Appl., Vol. 44, No. 4, pp. 817-832, Apr. 2016. crossref(new window)

24.
T. Takiguchi and H. Koizumi, “Quasi-Z-source DC-DC converter with voltage-lift technique,” IEEE IECON’13, pp. 1191-1196, 2013.

25.
Y. P. Siwakoti, F. Blaabjerg, and P. C. Loh, “Quasi-Y-source boost DC-DC converter,” IEEE Trans. Power Electron., Vol. 30, No. 12, pp. 6514-6519, Dec. 2015. crossref(new window)

26.
K. Patidat and A. C. Umarikar, “High step-up pulse-width modulation DC-DC converter based on quasi-Z-source topology,” IET Power Electron., Vol. 8, No. 4, pp. 477-488, Apr. 2015. crossref(new window)

27.
C. T. Pan, M. C. Cheng, C. M. Lai, and P. Y. Chen, “Current-ripple-free module integrated converter with more precise maximum power tracking control for PV energy harvesting,” IEEE Trans. Ind. Appl., Vol. 51, No. 1, pp. 271-278, Jan./Feb. 2015. crossref(new window)

28.
K. I. Hwu, W. Z. Jiang and Y. T. Yau, “An isolated high step-up converter with continuous input current and LC snubber,” IEEE APEC’16, pp. 2415-2421, 2016.

29.
“L6565 Quasi-resonant controller,” ST Tech. Rep., 2003.