JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Gain Design of an Adaptive Full-order Observer Using a Pole Placement Technique for Speed Sensorless Induction Motor Drives
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Power Electronics
  • Volume 16, Issue 4,  2016, pp.1346-1354
  • Publisher : The Korean Institute of Power Electronics
  • DOI : 10.6113/JPE.2016.16.4.1346
 Title & Authors
Gain Design of an Adaptive Full-order Observer Using a Pole Placement Technique for Speed Sensorless Induction Motor Drives
Yoo, Anno; Han, Sang-Heon; Son, Young Ik; Yoon, Young-Doo; Hong, Chanook;
  PDF(new window)
 Abstract
This paper proposes a design guideline for the feedback gain of the adaptive full-order observer in the speed sensorless control of induction machines. The performance of the adaptive full-order observer is dependent on its feedback gain. This paper presents a pole placement method for the observer feedback gain design to improve the estimation performance of the speed adaptive observer. In the proposed method, the observer poles can be chosen independently of the induction motor poles. Instead, they can be positioned according to the operating speed. An analysis and experimental results obtained with the proposed method reveals better performances under general operating conditions.
 Keywords
Adaptive speed observer;Full-order observer;Induction motor;Pole placement;Sensorless control;
 Language
English
 Cited by
 References
1.
B.Metidji, N. Taib, L. Baghli, T. Rekioua, and S. Bacha, “Low-cost direct torque control algorithm for induction motor without ac phase current sensors,” IEEE Trans. Power Electron., Vol. 27, No. 9, pp. 4132-4139, Sep. 2012. crossref(new window)

2.
Y. Liu, J. Zhao, R. Wang, and C. Huang, “Performance improvement of induction motor current controllers in field-weakening region for electric vehicles,” IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2468-2482, May 2013. crossref(new window)

3.
P. Vas, Sensorless Vector and Direct Torque Control, New York, NY, USA: Oxford Univ. Press, 1998, pp. 122–124.

4.
T. Ohtani, N. Takada, and K. Tanaka, “Vector Control of Induction Motor without Shaft Encoder,” IEEE Trans. Ind. Appl., Vol. 28, No. 1, pp. 157-164, Jan./Feb. 1992. crossref(new window)

5.
K. Ohyama, G. M. Asher, and M. Summer, “Comparative analysis of experimental performance and stability of sensorless induction motor drives,” IEEE Trans. Ind. Electron., Vol. 53, No. 1, pp. 178-186, Feb. 2006. crossref(new window)

6.
H. Kubota, K. Matsuse, and T. Nakano, “DSP-based control of the induction machine,” IEEE Trans. Ind. Appl., Vol. 29, No .2, pp. 344-348, Mar/Apr, 1993. crossref(new window)

7.
S. Sangwongwanich and S. Suwankawin, “Design strategy of an adaptive full-order observer for speed-sensorless induction-motor drives-tracking performance and stabilization,” IEEE Trans. Ind. Electron., Vol. 53, No. 1, pp. 96-119, Feb. 2006. crossref(new window)

8.
S. Sangwongwanich and S. Suwankawin, “A speed-sensorless IM drive with modified decoupling control,” IEEE Trans. Ind. Electron., Vol. 49, No. 2, pp. 444-455, April 2002. crossref(new window)

9.
S. Sangwongwanich, S. Suwankawin, and S. Koonlaboon, "A unified speed estimation design framework for sensorless ac motor drives based on positive-real property," in Proc. PCC-Nagoya 2007, pp. 1111-1118, 2007.

10.
L. Harnefors and M. Hinkkanen, “Complete stability of reduced-order and full-order observers for sensorless IM drives,” IEEE Trans. Ind. Electron., Vol. 55, No. 3, pp. 1319-1329, Mar. 2008. crossref(new window)

11.
P. L. Jansen and R. D. Lorenz, “A physically insightful approach to the design and accuracy assessment of fulx observers for field oriented induction motors,” IEEE Trans. Ind. Appl., Vol. 30, not. 1, pp. 1052-1060, Jul./Aug. 2003.

12.
J. Holtz and J. Quan, “Drift- and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors,” IEEE Trans. Ind. Appl., Vol. 39, No. 4, pp. 1052-1060, Jul./Aug. 2003. crossref(new window)

13.
M. Tsuji, S. Chen, K. Izumi, and E. Yamada, “A sensorless vector control system for induction motors using q-axis flux with stator resistance identification,” IEEE Trans. Ind. Electron., Vol. 48, No. 1, pp. 185-194, Feb. 2001. crossref(new window)

14.
M. Rashed and A. F. Stronach, “A stable back-EMF MRAS-based sensorless low-speed induction motor drive insensitive to stator resistance variation,” IEE Proc. Electr. Power Appl., Vol. 151, No. 6, pp. 685-693, Nov. 2004. crossref(new window)

15.
C. Lascu, I. Boldea, and F. Blaabjerg, “Very-low-speed variable-structure control of sensorless induction machine drives without signal injection,” IEEE Trans. Ind. Appl., Vol. 41, No. 2, pp. 591-598, Mar./Apr. 2005. crossref(new window)

16.
M. Saejia and S. Sangwongwanich, “Averaging analysis approach for stability analysis of speed-sensorless induction motor drives with stator resistance estimation,” IEEE Trans. Ind. Electron., Vol. 53, No. 1, pp. 162-177, Feb. 2006. crossref(new window)

17.
M. Hinkkanen, L. Harnefors, and J. Luomi, “Reduced-order flux observers with stator-resistance adaptation for speed-sensorless induction motor drives,” IEEE Trans. Power Electron., Vol. 25, No. 5, pp. 1173-1183, May 2010. crossref(new window)

18.
M. S. Zaky, “Stability analysis of speed and stator resistance estimators for sensorless induction motor drives,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 858-870, Feb. 2012. crossref(new window)

19.
Z. Qu, M. Hinkkanen, and L. Harnefors, “Gain scheduling of a full-order observer for sensorless induction motor drives,” IEEE Trans. Ind. Appl., Vol. 50, No. 6, pp. 3834-3845, Nov./Dec. 2014. crossref(new window)

20.
B. Chen, W. Yao, K. Wang, K. Lee and Z. Lu, "comparative analysis of feedback gains for adaptive full-order observers in sensorless induction motor drives," in Conf. Rec. IEEE-ECCE 2013, pp. 3481-3487, Sep, 2013.

21.
K. Kim and I. Kim, “Design of discrete flux observer by the power series approximation,” Journal of Power Electronics, Vol.11, No. 3, pp. 304-310, May 2011. crossref(new window)